

Fracture Simulation Parameters

Addressing the Needs of Completion Engineers—A Petrophysical Perspective

Fred Jenson, Petrophysics and Geomechanics Expert

History of Fracture Simulation

Torpedoes filled with gunpowder (later nitroglycerin) were lowered into wells and ignited by a weight dropped along a suspension wire onto a percussion cap.

Pouring nitroglycerin was risky enough in late 19th century oilfields. Doing it for an illegal well "shooting" led to the term "moonlighting."

Photographs comparing of the first hydraulic fracturing operation in 1947 with a modern shale gas frac-pad

The Elements of Frac Design

- Detailed petrophysical analysis of zone of interest
- Computation or estimation of elastic properties
- Determination of rock and fluid properties
- Interval averaging of log values for input into simulator
- Parameter testing to insure rock and fluid properties match well test results
- Transfer of rock and fluid properties into simulator and run simulation

Petrophysical Evaluation

Parameters of Interest

- Water Saturation
- Porosity
- Permeability
- Clay Volume
- Lithology

Determining Elastic Properties (wells with log data)

- Deterministic computations where compressional sonic, shear sonic, and density curve are measured over the zone of interest
- Computation of synthetic acoustics when DTS (shear acoustic log) and/or DTC (compressional acoustic log) are not acquired
 - Estimated from other logs in the well (RHOB, NPHI, DTC, GR, etc.) (Synthetic Curve Generation)
 - Generated using Deep Learning Models with Python Extensions (also using other curves)
 - Determined from a detailed rock physics model constructed over zone of interest
- Empirical equations for estimation of elastic properties when minimal logs are present

Barnett Wells with Measured DTC and DTS

Generate Synthetic DTS from Nearby Wells

Deep Learning Model for Synthetic DTS

Rock Physics Models for Elastic Properties

Required inputs for rock physics modeling include lithology, porosity, water saturation, pressure, temperature, and fluid properties. The aspect ratio is estimated based on lithology.

Deterministic Elastic Properties (Rock Physics Application)

Computing Elastic Properties (Python Script)

	Spyder (Python 3.4)	-	
🕙 4:Elastic_Property_Calculator: Multiwell : "Historic: 3/12/2018 10:42:00 AM" 💫 📃 🗶	File Edit Search Source Run Debug Consoles Projects Tools View Help		
Screens *	🗅 🏷 🐘 🐜 🧮 🕨 🖬 🖬 📽 🌲 州 📽 🚝 🚝 🏠 🔳 📧 🔀 🌽 🍐 🔶 🔶 🔶 🖉	 oydistribution_3.4.4.5Qt5\notebooks	
Wells	Editor - D'ExtensionsWorkspace/Elastic Property Calculator/Elastic Property Calculator.pv	9 × Help	
A_A1; A_D1; A_F1; AC_A1; A6_U1; AS_A1; B_SWD1;	🗅 colormap try1.py 🖄 datadump.py 🖄 temp.py 🖄 3dvew.py 🖄 Demo.py 🔀 Elastic_Property_Calculator.py 🔂 QuadCrossplot3D.py 🖄 s	🗱 Source Console 🔻 Object	~ 6 0.
nouts Outpute Console	1 from plconnect.processing import debug		^
	2 #from plconnect.functions import*	Usage	
21			1 1
V Bulk Density	6 data = info.curve_data	Here you can get help of	
Velocity	7 #code for run_extension that is invoked per well-interval	any object by	
Vp Vp	<pre>data.Kpy = (data.RHOB*((data.Vp*data.Vp) - (4/3)*(data.Vs * data.Vs)))*92.90304</pre>	Ctrl+I in	
Vs Vs	10 data.Gpy = (data.RHOB*(data.Vs [*] data.Vs)) ⁹ 2.93304 11 data Policy = ((data.Vs ^{**} data.Vs)))(2*((data.Vo ^{**} 2)) = (data.Vc ^{**} 2)))	front of it,	
	12 data.Youngpy = (((data.RHO0*(data.Vs**2))*((3*(data.Vp**2)) - (4*(data.Vs**2)))/(((data.Vp**2) - (data.Vs**2)))*92.90304	Editor or the	
	13	Console.	
	15	Help can also	
	16 17 if pame == ' main ':	automatically	
Vn	18 debug(_file_)	after writing	
Units: ft/sec	19	parenthesis	
P Velocity		object. You	
		can activate	~
Intervals Zone for		Variable explorer File explo	vrer Help
+ Use Start (ft) Stop (ft) Zone Parameters		IPython console	₽×
1 🗹 WorkingInterval		🗅 Console 1/A 🛛	Q
		Type "copyright", "cre	dits" or \land
0		"license" for more info	ormation.
Samping and		IPython 5.1.0 An en	hanced
Default V		Interactive Python.	ion and
Help Close Run		overview of IPython's	features.
		%quickref -> Quick refe	erence. v
Ready	Demission Ditt. Find of Finan Chief	Python con Histor	IPython con

Empirical Estimation of Elastic Properties

Multiplier to match known values when available	Image: Screens - Bourne #3; Setup: Rock Properties: Ruid Loss Properties: OC Parameter Turning Tourg's and Poisson's Poisson's Cal (dec): Young's Correction Method Noung's Correction Method Built: Density (groc) DEN Built: Density (groc) DEN Built: Density (groc) DTC (as:/h) DTS (as:h) DTS	Stress YM_ST P_RAT_ST P_RAT_ST Stress_Ct Lth	 Empirical options for estimation of Poisson's Ratio and Young's Modulus De-Hua Han Castagna Neutron
	Interval Start (#) Stop (#) 1 Upper_WC-320 Mid_WC+300 ✓ Sampling Grid Default Help	Zone for Parameters Close Run intervalues and click Run	

Bulk Moduli versus Vshale (Color Scale is Porosity)

Biot's Coefficient (Required Input for Some Simulation Packages)

The full rock physics modeling for elastic properties enables estimated determination of Biot's Coefficient along with the Poisson's Ratio and Young's Moduli. The Stress computations were performed in FracRAT.

Frac Preparation Examples

- Mississippi tight gas sand example
 - Cotton Valley formation, upper Jurassic age
 - Low porosity clastic sandstones (very common case globally)
 - Partially depleted after initial completion including frac
 - Post frac tracer survey very useful
 - Planned recompletion, never executed
- West Texas Unconventional example
 - Spraberry Wolfcamp formations, Permian age
 - High Kerogen content
 - Uranium salts associated with high Kerogen volume rocks
 - Actual frac design did not use analysis results

Mechanicsburg Field, Mississippi

Mississippi Tight Gas Sands

Generate Modeled DTC and DTS

Calculate Rock and Fluid Properties

«	2:FracRat Calculations: RW_97 : *	Historic: 3/8/2018 2:00:11	PM"				-	
Sci RV	reens •							0
Set	up Rock Properties Fluid Loss Prope	erties QC Parameter Tu	uning					
	oung's and Poisson's Poisson's Cal (dec) 1 forung's Carel (dec) 1 forung's Carel Carelon Method Lacy Sandat and Lacy Sandat langt Input Julk Density (g/cc) [RHOB_NRM onic Input DTC (us/R) [DTC_mod DTC (us/R) [DTC_mod DTS (us/R) [DTS_mod rticial Stress Critical Stress Input Critical Stress Critical Stress Input racture Toughness finimum (ps/in ^(1/2)) 500	one Bulk D	Poisson's Method Dynamic Youngs Metho ensity Shale (g/cc) 2.734 sal'in^(1/2)) 1500	Sonic v d Sonic v	Rock Properties Stress (ara) Young's Modulus (p Poisson's Ratio (dec Frecture Toughness Critical Stress (ps)) Lithology Export	ft) si) ;(pel'in^(1/2))	StressGI Stress YM PR Frac_tou Stress_C Lith	R Jgh Dit
_	C + (0)	Interval		-		Zone for		
1	12100	12700 Stop (π)	Working!	nterval		rarameter	5	
Sa De	mpling Grid rfault V							
	Help				History	Close		Run
						Calcula	tion Cor	mple

Post Frac Tracer Surveys

Spraberry Wolfcamp Unconventional Example

The next section deals with design of a frac in an unconventional reservoir with minimal log suite. No advanced acoustic data is available in any of these wells. There is no cartographic data associated with these wells, so no Google Maps can be displayed.

FracRAT (a module of PowerLog) is used to generate the rock and fluid properties for input into the fracture simulation software package. In this case we are using Mfrac for simulation.

Elements of PowerLog Frac - MFrac Workflow

PowerLogFrac Workflow

Load well data into PowerLog, edit curves, process curves, generate new curve data, compute TVD, etc.

PowerLog: Petrophysical package

Load well data, edit curves, process curves, generate new curve data, compute TVD, etc.

ZAC (Zone Average Calculator)

File Edit View Help																	
: 📔 🖀 😤 💢 🗀 💆 🖸 COR		RES			NDS	1	10	Mode	Add Zo	nec	- 01	Cursor Tr	cking Cr	eate Curve	ec Evit		
KGB	DEPTH	M2D9	SWO		NDHI			E Wood	Aud 20	nes	• •	cursor m	icking ch		LAIL		
0 gAPI 20	0 ft	0.2 ohmm 2000	1 dec -1	0.45	-0.1	^		From De	To Dept	KGR	CALX	M2R9	PERM	SWO	PHIEQ	BVWQ	NPHI
CALX	V 11	PERM	PHIEQ	0.45	ZDEN	-	1	9239.25	9275.5	93,59068	8.247123	32,56470	0.009732	0.195720	0.073574	0.033928	0.210113
6 in 1	6	0.001 10	0.25 dec 0	1.95	2.9	5	2	9275.5	9312	96.24244	8.248163	37.27632	0.024564	0.163730	0.082723	0.032304	0.221085
	-	Lease of the second sec	BVWQ		PORD		3	9312	9361.5	85.73447	8.247256	21.24107	0.014508	0.285577	0.069657	0.040748	0.211266
			0.25 dec 0	0.5	dec) =	4	9361.5	9417.75	81.89840	8.525778	7.917517	0.024323	0.689646	0.061834	0.061370	0.181482
							5	9417.75	9449.25	78.03748	8.247440	6.969598	0.016698	0.776777	0.058335	0.058335	0.170242
			PHIEQ BVWQ				6	9449.25	9481.25	91.45054	8.251279	7.036922	0.015643	0.645372	0.066958	0.066725	0.183926
							7	9481.25	9500	89.44789	8.251802	9.085565	0.007378	0.551255	0.066522	0.062053	0.184581
			BVWQ 0			~	8	9500	9532	92.35658	8.286891	20.52930	0.014314	0.319571	0.070262	0.044334	0.199944
	0000	¥	~ ~		5	3	9	9532	9564	90.38511	8.343077	16.63558	0.005662	0.382799	0.066324	0.049566	0.178889
	9000		5 5	_		3	10	9564	9575.5	94.25446	8.095808	21.67476	0.030110	0.258539	0.079051	0.041449	0.223977
					55 3		11	9575.5	9591.5	71.52246	8.015676	51.27996	0.044090	0.139163	0.088623	0.030133	0.214711
						1	12	9591.5	9613.5	70.10292	8.015415	58.64432	0.074310	0.146376	0.091698	0.030640	0.212349
2						4	13	9613.5	9635.25	79.45863	8.011284	23.24289	0.007860	0.316555	0.063080	0.044575	0.164131
			1 1			5	14	9635.25	9649.75	99.03932	8.020169	49.09854	0.040015	0.122497	0.088106	0.027777	0.234960
						\$	15	9649.75	9681.75	63.09116	8.009837	103.9402	0.028506	0.095665	0.077053	0.022374	0.196616
					E - - - - - - - - - -	1	16	9681.75	9/12.25	53.68682	8.011357	63.82216	0.021076	0.145843	0.064879	0.02/932	0.169249
	-		3 3 4		12 2	ξ	17	9712.25	9719.5	37.02933	8.011733	107.143	0.01545	0.114417	0.065478	0.026105	0.147889
Dean	-					5	18	9/19.5	9/42.75	50.89531	8.018074	89.82/40	0.075723	0.094523	0.085882	0.024626	0.201263
						ι.	19	9/42.75	9763	58.0048/	8.013609	84.03520	0.035168	0.135018	0.061822	0.025916	0.102020
	-		-			2	20	9703	9774.75	43.10000	6.003770	30.04347	0.004662	0.20/311	0.050723	0.035142	0.103597
Upper WC	0500					ŧ	21	97/4./5	9792.25	33./0430	8.00///4	79.32535	0.00/904	0.246204	0.033557	0.031720	0.13/35/
	3300					ξ	22	9792.23	9790.5	70 92020	0.013033	72 22206	0.020277	0.154662	0.071003	0.041333	0.1//0/3
	-					Ξ.	23	0012 5	0010 25	26 67166	0.010492	120 4075	0.037438	0.147201	0.070094	0.030707	0.157330
						ξ	24	9012.3	9010.23	78 07066	8.013910	42 22209	0.140694	0.121606	0.102126	0.033/9/	0.242511
						÷.	26	0022 75	0940.25	92 70612	0.012010	65 10116	0.000210	0.001106	0.002740	0.031517	0.270505
	-					5	27	0840.25	0870 75	72 44120	8 012420	52 17216	0.127243	0.102556	0.092724	0.025016	0 102924
	-					1	28	9870 75	0807 5	53 81518	8 050388	83 97175	0.034374	0.192550	0.062743	0.034536	0.146026
							29	9897.5	9942.5	72.80132	8.111138	43,24962	0.046584	0.328971	0.068526	0.047131	0.176511
	-	Contraction of the local division of the loc				4	30	9942.5	9968.75	56.32981	8.116226	33,09848	0.027893	0.320209	0.059511	0.044229	0.159047
						5	31	9968.75	9987.5	45.37736	8,109539	139.3513	0.030565	0.233965	0.065711	0.041915	0.135760
							32	9987.5	10026.75	90,42962	8.113246	26,56040	0.095877	0.532524	0.072952	0.061858	0.214592
	-		5 3			I ≸	33	10026.75	10070.5	94,17659	8.112795	6.436875	0.040952	0.723187	0.063356	0.062284	0.204870
	40000					II	34	10070.5	10122.75	96.87142	8.112838	7.464666	0.074176	0.536833	0.074261	0.060708	0.243295
	10000					3	35	10122.75	10165	101.0284	8,108605	5.254511	0.055701	0.730204	0.066496	0.066024	0.233925
			P 3		3-5-3	5	36	10165	10191	115.6464	8.119857	4.401257	0.047926	0.761679	0.068673	0.067965	0.253186
	÷					I ₽	37	10191	10226	106.7234	8.106886	4.006680	0.026502	0.816459	0.065461	0.064669	0.265194
	-		-		- 1 -												
			-6 - 5		1 1												
					🍤 🛃 🚽												
			2		2 3 3		1										
	-				23-5	1											
				-		Þ	•										F

FracRAT Module Setup Tab (Tab 1)

1:FracRat: Pence #1				_ O X
Screens *			1.744	
Dence #1.				
Pence #1;				÷
Setup Rock Properties Fluid	Loss Properties QC			
Required Curves				
TVD (ft) DE	PTH	Gamma Ray (gAPI)	BU_KGR	
Neutron Porosity (dec) BL	I_NPHI	Density Porosity (dec)	BU_PORD	
Deep Resistivity (ohmm) BL	_M2R9	Caliper (in)	BU_CALX	
Options			No. PR	
Hole Correction	Input GRIndex	GRindex (dec)	Vsn_FR	
Vsh Calculation	Mesozoic(C 👻	Gas Effect?	Automat	
Permeability Methods	Timur's 🔻		Vse I	Permeability Index
Tectonic Constant (psi/ft)	.0851		Tecto	onic Shale Effects
GRcl Override (gAPI)	0	GRsh Override (gAPI)	130	
Ppore Gradient (psi/ft)	0.8892	Pob Gradient (psi/ft)	1	
Density Porosity of Shale (de	ec) 0.0868	Neutron Porosity of Shale	(dec) 0.2667	
Bulk Density Shale (g/cc)	2.58			
	Input Critical Stress	Critical Stress Input (psi)		
Calibration Factors				
BHRP (psi/ft) 0	.0	Depletion Cutoff (dec)	.5	
Delta (dec) .7		TD MW (lbs/gal)	10.2	
CIII - Leak-off (ft/min^1/2) .0	103			
Bachelor's		Timur's	6	
Morris and Briggs		Coates		
	(atoma)		-	7 (
Start (ft)	Stop (ft)	Zone		Parameters
1 Upper_Spra	Wet_Lime			
Sampling Grid				
	0_10.10			
Help				Close Run
				Enter values and click Run

Select the curve data for input and set up parameters for determining many of the essential parameters for use in frac simulation

Has multiple options for computing Vsh and calculating permeability including allowing externally generated curve data.

FracRAT Module Rock Properties Tab (Tab 2)

rties QC Parameter Tuning Pc by tone, Shale, Limestone V Buik Dent	isson's Method [namic Youngs Method [Neutron	Rack Properties Stress Gradient (psi/ft) Stress (psi) Young's Madulus (psi)	StressGR Stress YM
nties QC Parameter Tuning Pc Dy tone, Shale, Limestone V Buik Dent	isson's Method [namic Youngs Method [sity Shale (a/cc) 25015	Neutron	Rock Properties Stress Gradient (psi/ft) Stress (psi) Young's Modulus (psi)	StressGR Stress YM
rties QC Parameter Tuning Pc by stone, Shale, Limestone V Bulk Den	isson's Method	Neutron Neutron	Rock Properties Stress Gradient (psi/ft) Stress (psi) Young's Modulus (psi)	StressGR Stress YM
Pc Dy stone, Shale, Limestone	isson's Method	Neutron Neutron	Rock Properties Stress Gradient (psi/ft) Stress (psi) Young's Modulus (psi)	StressGR Stress YM
stone, Shale, Limestone	sity Shale (g/cc) 25015		Young's Modulus (psi)	YM
Bulk Den	sity Shale (a/cc) 25015		Uppenenta Datia (dag)	DD.
		8	Fracture Toughness (psi-sqrt(in))	Frac_tough
			Lithology Export	Lith
nput (psi) 0 Maximum (psi-t	aqrt(in)) 1500			
Interval			Zone for	
	nput (psi) 0 Maximum (psi-a	nput (psi) 0 Maximum (psi-sqrt(in)) 1500	nput (psi) 0 Maximum (psi-sqrt(in)) 1500	nput (psi) 0 Maximum (psi-sqrt(in)) 1500

Choose the methodologies for computing Poisson's Ratio and Young's Modulus and set a range for fracture toughness

Generates the rock properties

FracRAT Module Fluid Loss Properties (Tab 3)

Input the physical parameters like compressibility and viscosity for the fluids in the reservoir and mud.

Generates the fluid loss properties

FracRAT Module QC Tab (Tab 4)

2:FracRat: Pence #1					_ = X
Screens *					
Pence #1;					÷
Setup Rock Properties Fluid Los 9 #<	s Properties QC GRI PI GRC NPHI_shc PORD_shc BVW_FR SWB_FR Vsh_FR	Parameter Tuning			
Total Porosity (dec) RHOB (dec)	PHIT_FR RHOB_FR				
Append Curve Name Prefix Suffix Apply					
		Interval		Zone for	
Start (ft)	Wet Lime	Stop (ft)	Zone Z Frac Gross Interval1	Parameters	
. opportopic	.vet_chile		CCC_CCCCIIICEIVAIT		
Sampling Grid					
Same As Curve V BU_	ZDEN				
Help				Close	Run
				Enter values and o	lick Run

Outputs the transient curves used in the generation of the rock and fluid properties.

Enables users to insure quality of results

FracRAT Module Parameter Tuning Tab (Tab 5)

2:FracRat: Pence #1				_ = X
Screens -				
Pence #1;				۸. ۳
Setup Rock Properties Fluid Loss Proper Turning Options Settings Number of Iterations 100	Value 6600 Value 6600 Value 6600 Value 6600 Value 6600 Value 6600	9 2:FracRat: Pence #1 2:FracRat: Pence #1 Input = 0.1236 Output = 0.599 Apply results? Yes	88 38590723276 9999994331 No	
Start (ft)	Stop (ft)	Zone		Parameters
1 Upper_Spra	Wet_Lime	Perfs		
Sampling Grid Same As Curve BU_ZDEN Help				Close Run Ready

Important feature that will take known data from Minifrac Tests and give the user the ability to determine the exact input parameters required to match Minifrac results.

Essential in assuring valid simulation models

FracRAT Exporter

nce #1	xport ;				÷
utput F	ile				
acRat	Sales Meeting				Browse
					(
pon c	Pottions				
xpoirs	Preview				
Settin	gs				
E	port With Column Heade	rs Decimal Pre	ecision 8		
Cate	egory Table	Li	thology Options		
MFr	ac_Lithology	- 0	Use Lithology 🔘 Calc	ulate	From VSh
Erre	ed Column Manaiana	100			
Exp	ort Column Mappings				
M	Frac Dack Proportion				
Livi .	i lac Nock i lopeliles				
	Column Name	Curve	Data Type		Units
1	Lithology Symbol	Lith	Lithology Description	*	
2	Zone Name	Lith	Lithology Name	~	
3	TVD @ Bottom (ft)	DEPTH	Curve		ft
4	MD @ Bottom (ft)		Curve		Ht.
5	Stress Gradient (psi/ft)	StressGR	Curve	*	psi/ft
6	Stress (psi)	Stress	Curve		psi
7	Young's Modulus (psi)	YM	Curve	~	psi
8	Poisson's Ratio	PR	Curve		6
9	Critical Chases (psi-	Frac_tough	Curve		(psi-in1/2)
10	Critical Stress (psi)	stress_crit	Curve		psi
4		W			•
Colu	mn Mapping Options				
Se	Ne Manning Recall Mar	Apply N	lanning		
	ine mapping (needs ma	phild (reply i	lapping		
		Inte	rval		
	Start (ft)	Stop	(ft)	Z	one
Upp	er Spra	Wet Lime			
			and a		
				_	
ampli	ng Grid				
ame /	As Curve 👻 BU	NPHI			
			01	-	Evenert
Hole					
Help			Clus	8	Lipon

	1;										
										*	
put	File										
Ra	LSales Meeting									Brow	/se
										(manual data data data data data data data da	
ort	Options										
port	Settings Previe	BW									
ору	Selection to Cli	pBoard									
Data	Preview										
	Lithology Sy	Zone Name	TVD @ Botto	MD @ Botto	Stress Gradi	Stress (psi)	Young's Mod	Poisson's Ra	Fracture Tou	Critical Stres	
5	3 16744703 1	Shly-Sand	9328.5		1.009747	9419.4249095	3324856.7482	0.24237763	838.08138118	0	
	3 16744703 1	Shly-Sand	9384.5		1.00743432	9454.2674116	3610078.8056	0.23020446	858.6018467	0	
	3 16744703 1	Shly-Sand	9406.75		1.00723951	9474.8502302	3635497.3246	0.22916112	872.31450974	0	
3	7 12615935 1	V-Sdy Shale	9488.75		1.00872446	9571.5341809	3447301.8541	0.2370431	940.75020397	0	
)	9 16744576 1	Sandy Shale	9513.5		1.01136003	9621.5736633	3142766.7534	0.25064266	1022.8407776	0	
10	7 12615935 1	V-Sdy Shale	9533		1.00529803	9583.5061075	3901550.4067	0.21860691	947.46292235	0	
11	7 12615935 1	V-Sdy Shale	9546		1.01102133	9651.2095841	3179921.2016	0.24892216	961.78424873	0	
12	7 12615935 1	V-Sdy Shale	9559		1.01055725	9659.9167715	3231748.6125	0.24655195	901.49207624	0	
13	2 16711935 1	V-Silty Sand	9576		1.01375275	9707.6963328	2895626.1153	0.26257589	748.88651012	0	
14	2 16711935 1	V-Silty Sand	9587.75		1.01202969	9703.0876881	3070936.4748	0.25402121	703.44235723	0	
5	3 16744703 1	Shly-Sand	9609.75		1.00521541	9659.8688278	3913405.1210	0.21815139	811.53605383	0	
6	7 12615935 1	V-Sdy Shale	9634.5		1.01462702	9775.4240066	2811642.8075	0.26684188	997.17123908	0	
7	2 16711935 1	V-Silty Sand	9650.25		1.00963206	9743.2018327	3338340.6715	0.24178174	722.20992278	0	
8	1 8388863 16	Silty-Sand	9668.5		1.00926048	9758.0349144	3382413.3950	0.23984881	619.41457232	0	
19	1 8388863 16	Silty-Sand	9684		1.00698552	9751.6477661	3668976.2161	0.22779664	627.65289888	0	
20	4 8421631 16	Clean Sand	9695.75		1.00688242	9762.4801964	3682677.2722	0.22724137	573.43720439	0	
21	1 8388863 16	Silty-Sand	9735		1.00470964	9780.8483548	3986972.3270	0.21535103	610.13749098	0	
22	2 16711935 1	V-Silty Sand	9774		1.00498125	9822.6867181	3947252.6994	0.21685735	701.55885358	0	
23	2 16711935 1	V-Silty Sand	9800		1.01162323	9913.9076551	3114279.6939	0.25197418	734.95598215	0	
24	3 16744703 1	Shly-Sand	9844.25		1.01579694	9999.7589786	2704182.8851	0.27247387	866.34568665	0	
25	1 8388863 16	Silty-Sand	9852		1.00502503	9901.5065848	3940896.6177	0.21709961	667.32611567	0	
26	4 8421631 16	Clean Sand	9883.25		1.00444317	9927.1629874	4026427.2169	0.21386756	595.52844619	0	
27	3 16744703 1	Shly-Sand	9893.75		1.00700145	9963.0205705	3666865.2444	0.22788235	827.02923399	0	
					In	terval					
		Start (ft)			Sto	p (ft)			Zone		
	per_Spra			Wet_Lime							

MFrac Rock Properties

Rock Properties

ł	Litholog Symbol	Zone Name	TVD at Bottom (ft)	MD at Bottom (ft)	Stress Gradient (psi/ft)	Stress (psi)	Young's Modulus (psi)	Poisson's Ratio	Fracture Toughness (psi-in^½)	Critical Stress (psi)
1		V-Sdy Shale	9253	9253	1.01851	9424.24	1.1181e+07	0.285189	973.157	0
2	靈	V-Silty Sand	9304.75	9304.75	1.01087	9405.85	1.4303e+07	0.248129	778.457	0
3		Shly-Sand	9344.5	9344.5	1.01249	9461.2	1.4235e+07	0.256317	840.621	0
4	巖	V-Silty Sand	9367	9367	1.01088	9468.92	1.4799e+07	0.248205	796.742	0
5		Shly-Sand	9385.75	9385.75	1.01139	9492.67	1.5555e+07	0.250804	835.053	0
6	龗	V-Silty Sand	9430.75	9430.75	1.00847	9510.6	1.7469e+07	0.23569	760.046	0
7		V-Sdy Shale	9451.5	9451.5	1.01423	9585.98	1.3885e+07	0.264904	902.826	0
8		Shly-Sand	9472.25	9472.25	1.01394	9604.32	1.3825e+07	0.263509	892.471	0
9		V-Sdy Shale	9499.75	9499.75	1.01531	9645.17	1.2967e+07	0.270131	916.173	0
0		V-Sdy Shale	9534.25	9534.25	1.01419	9669.58	1.3888e+07	0.264738	902.537	0
1	靈	V-Silty Sand	9560.25	9560.25	1.01199	9674.88	1.3149e+07	0.253824	793.57	0
2		Silty-Sand	9589.5	9589.5	1.00747	9661.12	1.5528e+07	0.230387	678.612	0
3		Shly-Sand	9619	9619	1.01335	9747.38	1.336e+07	0.260579	852.34	0
4		Silty-Sand	9657	9657	1.005	9705.26	1.7225e+07	0.216949	612.756	0
5		Clean Sand	9688	9688	1.00171	9704.55	2.1513e+07	0.198314	541.481	0
6		Clean Sand	9714	9714	1.00301	9743.26	1.8373e+07	0.205801	549.039	0
7		Clean Sand	9750.25	9750.25	1.00213	9771.03	2.257e+07	0.200758	579.01	0
8		Silty-Sand	9777.75	9777.75	1.00479	9824.58	1.8923e+07	0.215792	635.466	0
9	靈	V-Silty Sand	9821	9821	1.01087	9927.71	1.3182e+07	0.248155	752.263	0
0		Clean Sand	9867.5	9867.5	1.00116	9878.91	2.3095e+07	0.195097	543.768	0
1		V-Silty Sand	9902	9902	1.00956	9996.67	1.5419e+07	0.241413	760.052	0
2		Clean Sand	9943.5	9943.5	1.00293	9972.61	2.0955e+07	0.205323	586.982	0
3		Clean Sand	9967.75	9967.75	1.00063	9974	2.3625e+07	0.191987	526.393	0
4		Sandy Shale	9995.25	9995.25	1.02146	10209.8	1.0134e+07	0.298567	1028.74	0
5		Shly-Sand	10054	10054	1.01531	10207.9	1.2552e+07	0.270163	895.872	0
6	2	Sandy Shale	10117.8	10117.8	1.02077	10327.9	1.0367e+07	0.295468	1010.52	0
7		Silty-Shale	10166.3	10166.3	1.02878	10458.8	7.797e+06	0.329612	1145.14	0
8		Silty-Shale	10223.3	10223.3	1.02878	10517.4	7.797e+06	0.329612	1145.14	0
9										

X

Frac Simulation Results

33 © 2014 CGG and Baker Hughes Incorporated

Perforations, Frac Stages, and Production History

Frac Stages are colored intervals

Bourne #3

22 Months Production 18,705 bbls oil 18,817 mmcf gas 39,797 bbls Water

Currently making 624 bbls/month oil

- Perforations

Pence #1

35 Months Production 38,464 bbls oil 51,518 mmcf gas 56,012 bbls Water

Currently making 485 bbls/month oil

Simulation to Stimulation Workfow

- Generate a simulation model based on best available data
- Mini-fracs are required to calibrate simulation models
- FracRAT has parameter tuning to calibrate simulation models
- Calibrated simulation models accurately predict frac stimulation results

Surface Pressure

Surface Pressure

- Perf and frac everything is still a common practice when completing unconventional reservoirs
- Frac simulations are often not run for lack of data and the time involved in generating the models
- Petrophysical parameters are important factors in frac stimulation (and simulation) design
- The elastic properties needed as inputs to frac simulation can be deterministically or empirically derived.
- Tools like FracRAT can reduce the time needed to generate frac simulations
- Frac simulations should result in more effective fracs and improved commercial results

Thank you

geosoftware.info@cgg.com Visit our website cgg.com

