Accelerating pore-scale flow simulations with a machine learning approach

Arash Rabbani, Masoud Babaei University of Manchester

SPE London evening meeting, 26 Feb 2019

The University of Manchester

- The largest campus-based university in the UK-over 39,000 students.
- The largest university library in the country
- £650 million investment in superior facilities
- Highly rated in the 2014 research assessment (85% judged to be 'world leading' or 'internationally excellent').
- Teaching rated as "Excellent"
- Schlumberger Centre of Excellence, BP and Shell core university

Petroleum Engineering overview

- Energy Institute accredited programmes (since June 2014)
 - 3 year BEng in Petroleum Engineering (partial CEng status)
 - 4 year MEng in Petroleum Engineering (full CEng status)
- Programme started in 2006/07 and grown into one of the UK's leading undergraduate programmes in Petroleum Engineering
- Run jointly between "School of Earth and Environmental Science" and "School of Chemical Engineering and Analytical Science"

Petroleum Engineering at University of Manchester; jointcollaboration of CEAS and SEAES

School of Chemical and Analytical Science (CEAS)

- Birth place of Chemical Engineering
- Largest Chemical Engineering School in the UK
- Morton Laboratory- pilot scale chemical manufacturing plant
- James Chadwick Building- new teaching facilities
- Research and teaching excellence
- 3 dedicated academic staff in Petroleum Engineering

School of Earth and Environmental Science (SEES)

- One of the largest Earth Sciences teaching and research centres in the UK
- 47 academic staff, 20 Professorial

MANCHESTER

- 140 undergraduates per year. High staff:student ratio
- Exceptional facilities and resources for teaching
- Access to research equipment & industry standard software

Lecturer in Petroleum/ Engineering at the University of Manchester Telephone: +44 (0)161 306 4554, email: masoud.babaei@manchester.ac.uk

Dr Masoud Babaei

Funding rate: 43% for First Grants of Engineering Prioritisation Panel Meeting, August 2017, overall the success rate of **EPSRC First Grant was 30%**

Research Grants

1 - British Council Newton Institutional Link with Turkey April 2018 call (£247,721 total – UoM: £104,788, PI: M Babaei) -Soil salinity and sodicity management by sustainable irrigation practices in Konya Plain, Turkey.

Collaborators: Prof Nadim K Copty, Boğazici University, Prof Günay Erpul, Ankara University and and Dr Manoj Menon, University of Sheffield

Funding rate: 11.4% for Grants Awarded: Newton Institutional Links

Duration: 24 months beginning April 2019

MASOUD BABAEI

Research Group

2 - American Chemical Society Petroleum Research Fund #59217-ND9 (\$110k, PI: M Babaei), A better understanding of noble gas fractionation during natural gas migration in tight rock and water-saturated crust through two phase flow modelling. Collaborators: Prof Andrew J Masters at the University of Manchester, Dr Dong Chen at the Chinese University of Petroleum, Beijing, and Dr Ali Takbiri, West Virginia University Duration: 24 months beginning 15/10/18

3 - Royal Society International Exchanges 2017 Cost Share (China), IEC\NSFC\170002, (£6,178, PI: M Babaei) Gas transport behaviour in multiple formations of tight sandstone, shale and coal during gas co-production. Duration: 24 months beginning 31/03/18

Collaborators: Dr Majid Sedighi at the University of Manchester, and Dr Dong Chen at the Chinese University of Petroleum, Beijing

4 - Engineering and Physical Science Research Council First Grant EP/R009678/1 (£100,961, PI: M Babaei) Multiscale modelling of miscible interfaces: Application on surfactant-enhanced aquifer remediation.

Duration: 18 months beginning 01/01/18

Collaborators: Dr Fabrice Golfier, University of Lorraine, France

Engineering and Physical Sciences Research Council

ROYAL

SOCIETY

Research expertise and interests

 Groundwater flow, soil contamination and remediation (active <u>EPSRC project</u>)
Hydrocarbon recovery and Enhanced Oil/Gas Recovery using surfactant solutions (an active PhD project)

3 – Shale gas transport in tight pores, tracing technologies using noble gas components (active ACS project and a PhD project)

Research expertise and interests

MANCHESTER

1824

6 – Reactive transport (acid injection in rock and COwater-rock interaction)

Motivations

- Big data issue
- Computational limits
- Accuracy
- Avoiding unnecessary repeats

Problem Statement

Assumptions

LBM Simulation

MANCHESTER 1824

Throat velocity profile

Machine Learning approach

Throat geometrical features

No.	Feature	Feature Description						
1	Cross–section area $(pixel^2)$	Surface area of the 2–D projection of throat						
2	Wetted perimeter $(pixel)$	Perimeter of the 2–D projection of throat						
3	Axes ratio	Ratio between the major and minor axes of the						
		throat which is always greater than 1						
4	Equivalent diameter $(pixel)$	Diameter of the circle with the same area as						
		the throat						
5	Solidity	Area of the throat convex hull divided by the						
		throat area						
6	Hydraulic radius (pixel)	Throat area multiplied by two divided by						
		throat wetted perimeter						
7	Mean distance $(pixel)$	Non–zero average of the throat distance trans-						
		form						

1824

Distance Transform

1	1	1	1	1	1	1	1 Sel	1 id cry	1	1		0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1			1		0	0	0	0	1	1	1	0	0	0	0
1	1	0 Voi	n d spr	0	0	0	0	0	1	1		0	0	1	1	1.4	2	1.4	1	1	0	0
1	1	0	U Spa	0	0	0	0	0	1	1		0	0	1	2	2.2	2.8	2.2	2	1	0	0
1	0	0	0	0	0	0	0	0	0	1		0	1	1.4	2.2	3.2	3.6	3.2	2.2	1.4	1	0
1	0	0	0	0	Q	0	0	0	0	1		0	1	2	2.8	3.6	4.5	3.6	2.8	2	1	0
1	0	0	-0-	0	0	0	0	0	0	1		0	1	1.4	2.2	3.2	3.6	3.2	2.2	1.4	1	0
1	0	0	0	G.	0	0	0	0	1	1		0	0	1	2	2.2	2.8	2.2	2	1	0	0
1	1	0	0	0	0	4	- <u>0</u>	<u> </u>	-1-	1	1	0	0	1	1	1.4	2	1.4	1	1	0	0
1	1	1	1	0	0	0	1	1	1	1		0	0	0	0	1	1	1	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1		0	0	0	0	0	0	0	0	0	0	0
	(a)								(b)													

Physical justification

Features statistics

ANN structure

MANCHESTER 1824

Features statistics

Empirical correlation

empirical correlation (pixel²)

$$k_{throat} = 1.342\bar{D}^2 - 0.913\bar{D} - 0.381$$

Model constants	Mean value	Lower bound-	Upper bound-
		ary	ary
a	1.342	1.338	1.345
b	-0.9127	-0.9376	-0.8878
с	-0.3814	-0.4131	-0.3498

Permeability comparison

Computational costs

Thanks for your attention

