Technical and Business Aspects of Carbon Capture, Utilization and Storage

Presented by Drew Powell

Additional material provided by GaffneyCline Energy Transition Team

31 January 2023

Disclaimer Statement

The material and views expressed in this presentation are those of the author.

The presentation material has been prepared responsibly and carefully, but no warranty, expressed or implied, is given that the information is complete or accurate nor that it is fit for a particular purpose. All such warranties are expressly disclaimed and excluded.

Attendees are urged to obtain independent advice on any matter relating to the interpretation of CO_2 storage and reporting.

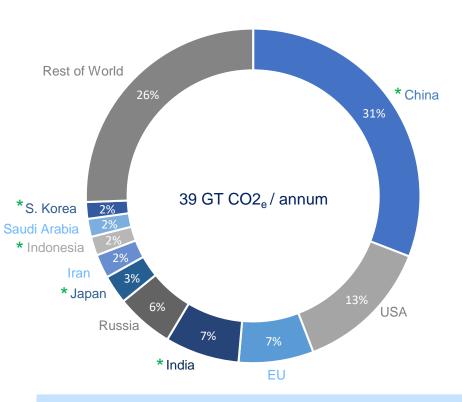
© 2023 GaffneyCline. All rights reserved. Terms and conditions of use: by accepting this document, the recipient agrees that the document together with all information included therein is the confidential and proprietary property of GaffneyCline and includes valuable trade secrets and/or proprietary information of GaffneyCline (collectively "information"). GaffneyCline retains all rights under copyright laws and trade secret laws of the United States of America and other countries. The recipient further agrees that the document may not be distributed, transmitted, copied or reproduced in whole or in part by any means, electronic, mechanical, or otherwise, without the express prior written consent of GaffneyCline, and may not be used directly or indirectly in any way detrimental to GaffneyCline's interest.

Presenter

Drew Powell

Role and Experience

- GaffneyCline Projects' & Energy Transition Director
- Background in multiple disciplines, transactional, valuation, facilities, engineering, EPC, costs, commercial, hydrogen, CCS. Also CPRs, stock market listings, evaluation of both exploration and producing assets, reserves assessment.
- A chartered chemical engineer with over 32 years' industry experience.
- Worked on several CCS projects including hubs, commerciality, SRMS assessments etc.
- Based in Farnham, UK.
- Professional Involvement
 - SPE, AIEN, IChemE Fellow
 - Regular presenter, media releases, across multiple topics and disciplines.
- Education
 - CEng. IChemE since 1996.
 - B.Eng. Chemical Engineering, Aston University, UK.



Scene Setting - Global Carbon Perspective

Top 10 Global CO₂ Emitters - Emissions, Targets and Policy

Global GHG Emissions - 2021

	2021 Emissions (MT)*	% Global GHG Emissions	GHG Emissions Global Ranking	Carbon Market	Net Zero Target	2030 Emissions Reduction Target	GHG Emissions Coverage	Legal Status	Utilisation of Carbon Offsets
China	12,040	31%	1	National ETS	2060	65%	< 95%	Proposed	Right Reserved
US	5,168	13%	2	State ETS + State Carbon Tax	2050	50%	100%	Proposed	Right Reserved
EU	2,826	7%	3	Regional ETS + Carbon Tax	2050	55%	100%	Legislated	None
India	2,797	7%	4	-	2070	45%	ТВС	Public Pledge	ТВС
Russian Federation	2,172	6%	5	Pilot ETS (Sakhaslin)	2060	30%	ТВС	Legislated	ТВС
Japan	1,082	3%	6	Carbon Tax	2050	46%	100%	Legislated	Right Reserved
Iran	897	2%	7	-	-	-	-	-	-
Indonesia	713	2%	8	National Power ETS	2060	41%	ТВС	Proposed	TBC
Saudi Arabia	679	2%	9	-	2060	-	TBC	Public Pledge	Right Reserved
South Korea	629	2%	10	National ETS	2050	40%	ТВС	Legislated	None

Net Zero Target Status of Top 10 Global Emitters

Top 10 emit ~ 75% of Global GHG emissions

5 of top global emitters in APAC = 44 % global emissions

9 x top global emitters set Net Zero target, 4 x top emitters legislated for Net Zero target

7 x top emitters plan to cut emissions by >40% by 2030

4 x top emitters with National/Regional Carbon Compliance Market (CCM)

Policies, Targets & Pledges: Overview Key Global Developments in Policies, Targets & Pledges in 2021

CO₂ Emission Targets

45 out of 145 countries submitted stronger NDC at COP26

140 countries commit to Net Zero target covering 90% of global GHG emissions

16 countries have legislated for Net Zero Target, a further 34 countries implemented Net Zero government policy

International Maritime Organisation to halve emissions from shipping by 2050

Carbon Pricing

EU Allowances trade above US\$90/T up from US\$30/T at start of 2021

EU announces CBAM (Carbon Border Adjustment Mechanism) from 2026 impacting imports from 6 sectors (high intensity emitters like steel & cement)

China launches ETS became the largest global carbon market

COP26 reach agreement for global carbon mechanism Carbon revenue collected increased by \$31B to \$84B

Voluntary carbon markets grew by 48% in 2021

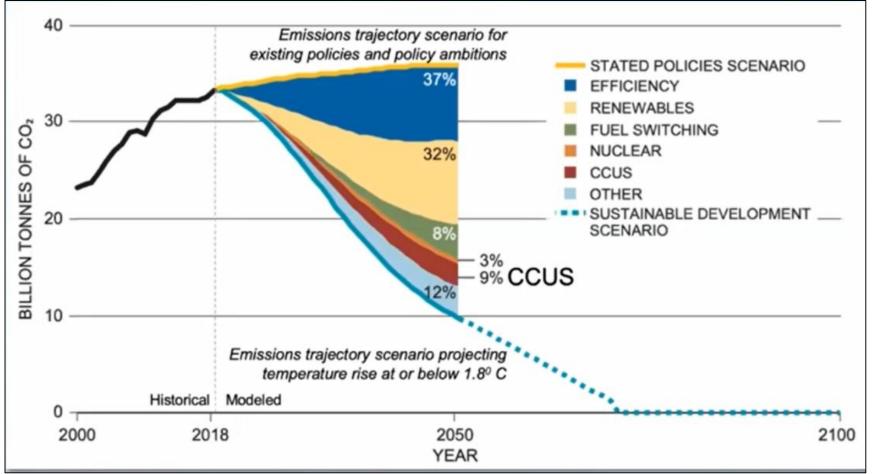
Investment

45 countries pledge to phase down unabated coal by 2030 representing > 16% of global production

20 x countries commit to end by 2022 new direct public support for investment in unabated fossil energy sector

Methane Emissions

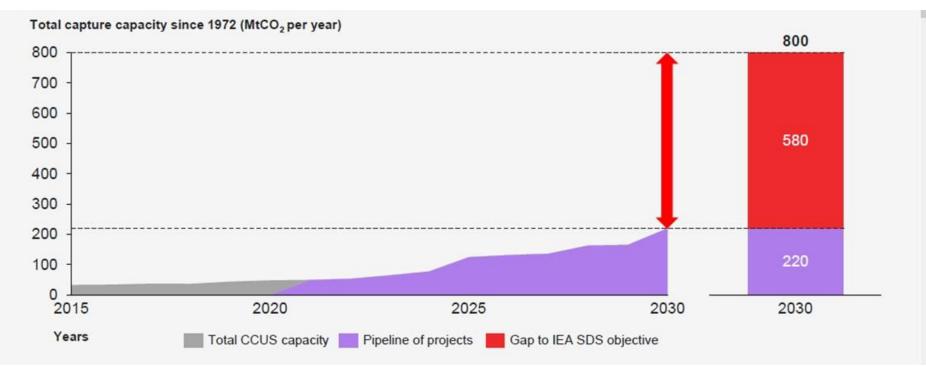
105 countries commit to cutting CH4 emissions by 30% by 2030


UNEP launch International Observatory (IMEO) to monitor and report on CH4 emissions

IMEO 2022 focus on CH4 emissions from fossil fuel production

Scene Setting - Global CCUS and Project Pipeline

Global Emissions Projections: CCUS is a Key Part of the Solution (Previous SDS)

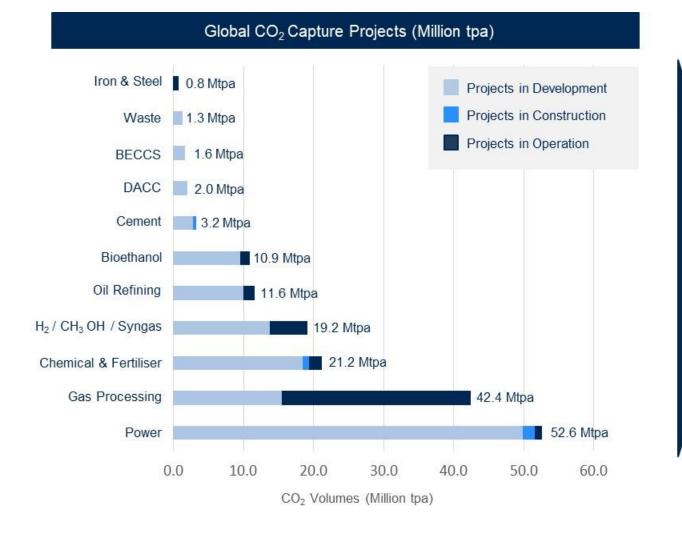

 Broad acceptance among scientific community and policy makers that CCUS is a key part of reducing carbon emissions

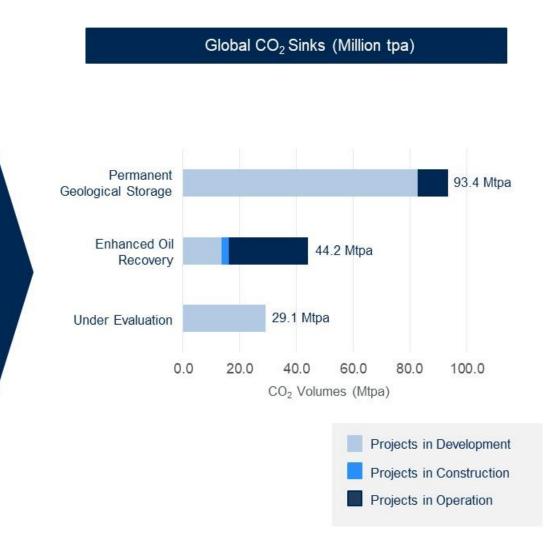
- Need "all of the above", not "either/or"
- Amount of projected emissions reduction from CCUS varies, with different projections suggesting contribution between 10-30%

Global emissions projections for IEA's Stated Policies Scenario and the Sustainable Development Scenario with wedges to achieve CO2 reduction but current scenarios no different.

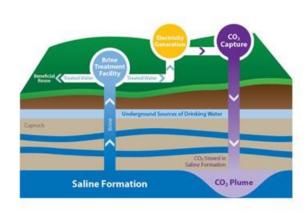

Gaffney Cline

Status of CCUS Projects vs What's Required


- The SDS, created by the IEA, is a roadmap with guidance and advices in order to follow the energy transition and to respect the Paris Agreement, to keep temperatures well below 2°C above pre-industrial era. Replaced by NZE and APS – Announced Pledges Scenario.
- Current and Planned CCUS Developments are far below the required targets to achieve "Net Zero".
- Global CCUS capacity remains low relative to IEA objectives in the Sustainable Development Scenario (SDS).
- The capture capacity of the current pipeline of projects needs to be multiplied by ~4-fold by 2030.

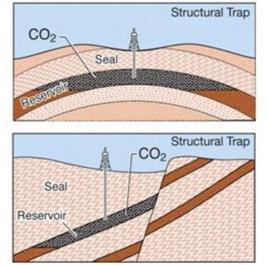

Emerging Global CCUS Project Pipeline

Global CCUS Project Pipeline – Sources + Sinks



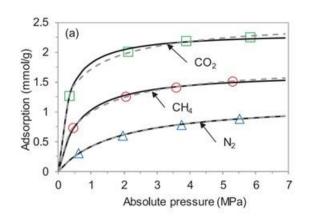
Hubs and Clusters

- Cross-industry hubs and clusters already starting to develop and likely to increase:
 - especially in Europe and North America
 - Potential in other regions e.g. Middle East, China.
- Collect CO₂ emissions from an area with several high emitters.
- Smaller CO₂ volumes can be collected by gathering with larger economies of scale.
- Creates commercial synergies.
- Uses shared infrastructure.
- Potential challenges include:
 - Public policies e.g. CCS/CCUS laws to assist development.
 - Financial support from governments.
 - Complexity of projects e.g. shared pipelines can increase time of project.
- A <u>**Cluster</u>** is a geographic concentration of related industries, facilities, factories etc.</u>
- A <u>**Hub**</u> is a central CO_2 point to capture emissions from a cluster.


Potential Storage Types for Geological CO₂ Storage

Deep Saline Formations

Biggest potential for large-scale CO₂ storage


Large density difference between supercritical injected CO₂ and brine may lead to fast buoyancy segregation

Oil & Gas Reservoirs

Depleted oil and gas fields can be used to trap CO₂ using some of the same mechanisms as hydrocarbons Enhanced oil recovery by CO₂

injection can also be used to enhance production at the same time

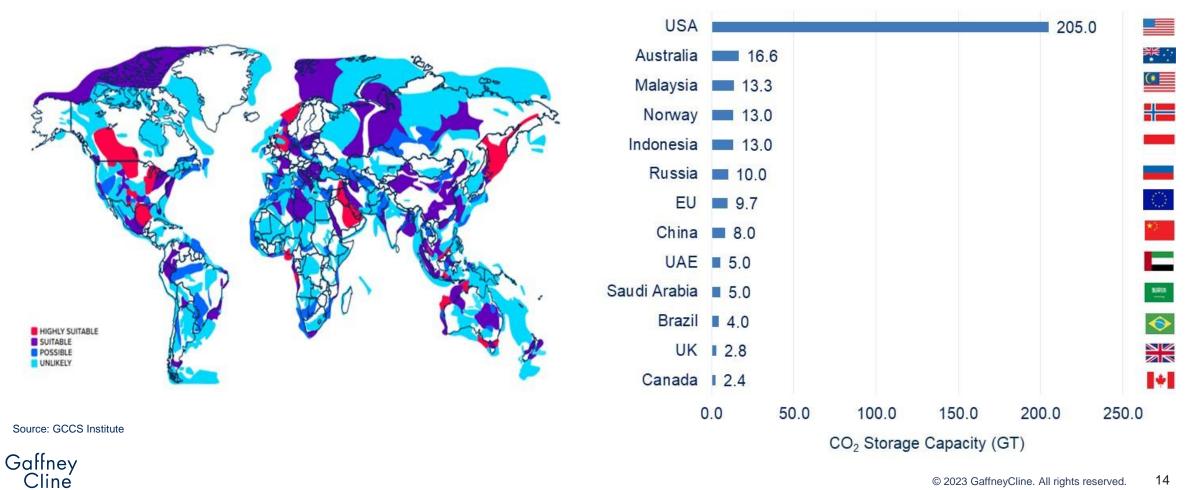
Coal Seams

Coals are potential CO₂ sequestration sites because of the adsorption characteristic of coal to preferentially capture CO₂

Can also be used as an enhance recovery technique

Some organic shales have similar properties to coal allowing adsorption

Basalts


Basalts allow injected CO_2 to react chemically with Mg and Ca to form stable minerals

Hellisheiði, Iceland

Global Carbon Dioxide Storage Potential

Global Storage Potential of Sedimentary Basins - Aquifer

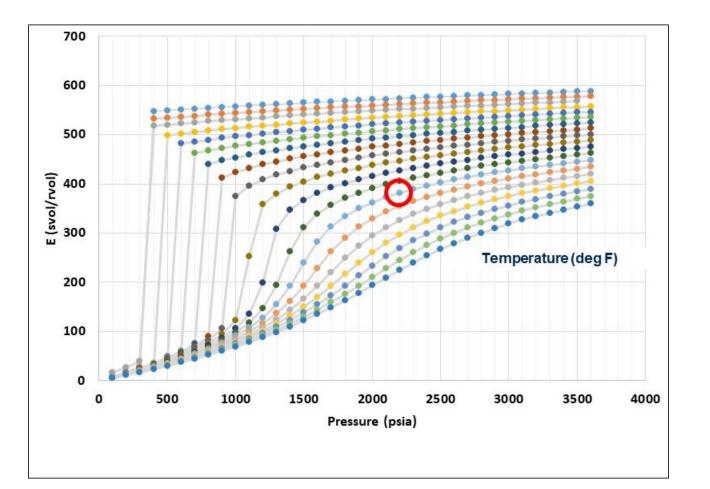
Estimated Storage Potential of Depleted Hydrocarbon Fields

Aquifers Offer Significant CO₂ Storage

Storage in Depleted gas reservoirs

- Analytical methods provide a good basis for benchmarking estimates of storable quantities.
- Dynamic model sensitivity analyses can provide insight into the effect of different processes.
- Dynamic models not automatically reliable CCS forecasts.
- Storable quantities can be estimated accurately, usually with a relative low range of uncertainty.

Storage in Saline Aquifers


- Analogs are limited for reliable basis for estimating storable quantities.
- Simulation is important, supported by analytical end-points.
- For large open aquifers in particular, storable quantities are determined by the development plan rather than subsurface estimate.

Depleted gas reservoirs offer relative low risk opportunities, but in the long run aquifers will provide the storage space that we need to make a material difference to CO₂ emissions.

CO₂ Expansion Factor - More CO₂ than produced HC's

Gaffney Cline

 CO_2 density at 60 °F and 14.7 psia is 0.00184 t/m³

In a depleted gas reservoir, it is not unreasonable to store a much larger volumes of CO_2 (expressed at surface conditions) than the volumes of natural gas Depth: 5,000 ft, p = 2,200 psia, T = 120 °F

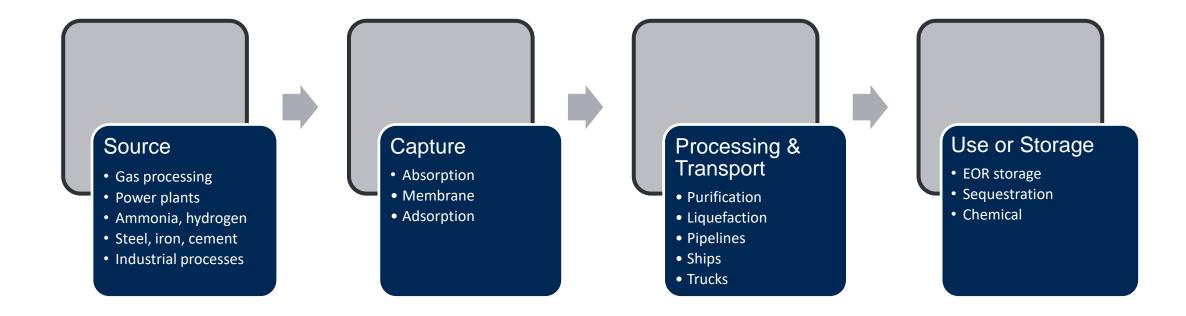
Natural gas expansion factor ~ 150 scf/rcf

CO₂ expansion factor ~ 380 scf/rcf

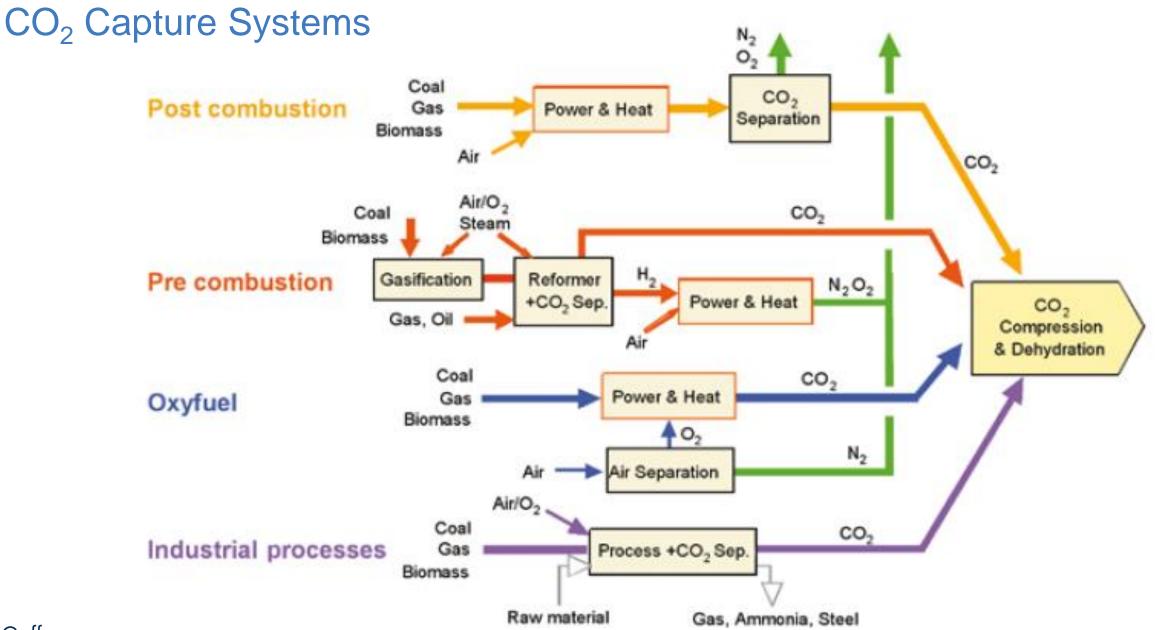
Ratio: 2.5 : 1

16

CO₂ Storage International Standards Developing in Support of Sector


- SRMS
 - Released in 2022
 - Includes suggestions for the application of the SRMS with the intent of including details of the processes of quantification, categorization, and classification of storable quantities so that the subjective nature of subsurface assessments can be consistent between storage resource assessors.
 - Available for download from SPE Bookstore
- Similarly ISO 27914 other ISO standards
- CarbonSAFE in US etc.

Carbon Capture Methodology



CCUS Capability

• Let us discuss further – key part of process train – firstly Capture .

CO₂ Capture Stream Categorization

CO ₂ Concentration	High Pressure Variable	High Purity 40-100%	Dilute 10-25%	Very Dilute 3-8%	Extremely Dilute 0.04-1%
Sources	Gas processing 2 to 65% CO2 (Sour/acid gas) ~100-1000 psia 1% of total emissions Synthesis Gas 45% CO2 After gasification ~500psia <<1% of total emissions	Ethanol Plants >99% CO2 (Fermentation), 17.4ps n/a (0.1%) Ammonia Plants 97% CO2, 29psia <1% of total emissions Petchems 100% CO2 (EO), 43ps 2% of total emissions Hydrogen 45% CO2 20psia 4% of total emissions	58% of total emissions Cement Plants 22.4% CO2 (Kiln off gas 14.7psia 7% of total emissions	Natural Gas Turbines 4-6% CO2 14.8psia 11% of total emissions Industrial Furnaces 8% CO2 14.5psia 13% of total emissions	Confined Spaces (submarines, spacecraft) 0.2-1% CO2 14.5psia n/a Ambient Air 0.04-0.06% CO2 4.4-14.5psia

Absorption	Adsorption	Membrane	Cryogenic	New Tech
Uptake of CO ₂ into the <u>bulk phase</u> of another material	Uptake of CO ₂ onto the <u>surface</u> of another material	Selectively <u>separate</u> CO ₂ based on differences in solubility or diffusivity	Gas stream is <u>cooled</u> to separate CO ₂	e.g. Oxyfuel combustion technology utilising a metallic <u>oxygen carrier</u>

Physical Absorption – How It Works

- CO₂ molecules dissolve into a selective liquid solvent.
- CO₂-rich solution is sent to desorber.
- Heat is applied to release the CO₂ from the solvent.
- CO₂-lean solution cooled and recycled.
- Only technology currently available for widespread commercial deployment.
- Energy intensive, up to 50% of OPEX.

Physical Separation – How It Works

Adsorption

- CO₂ molecules adhere to a selective surface.
- Packed bed or fluidised bed systems.
- Adsorbent regenerated by decrease in pressure or increase in temperature in a cyclic process.

Cryogenic Separation

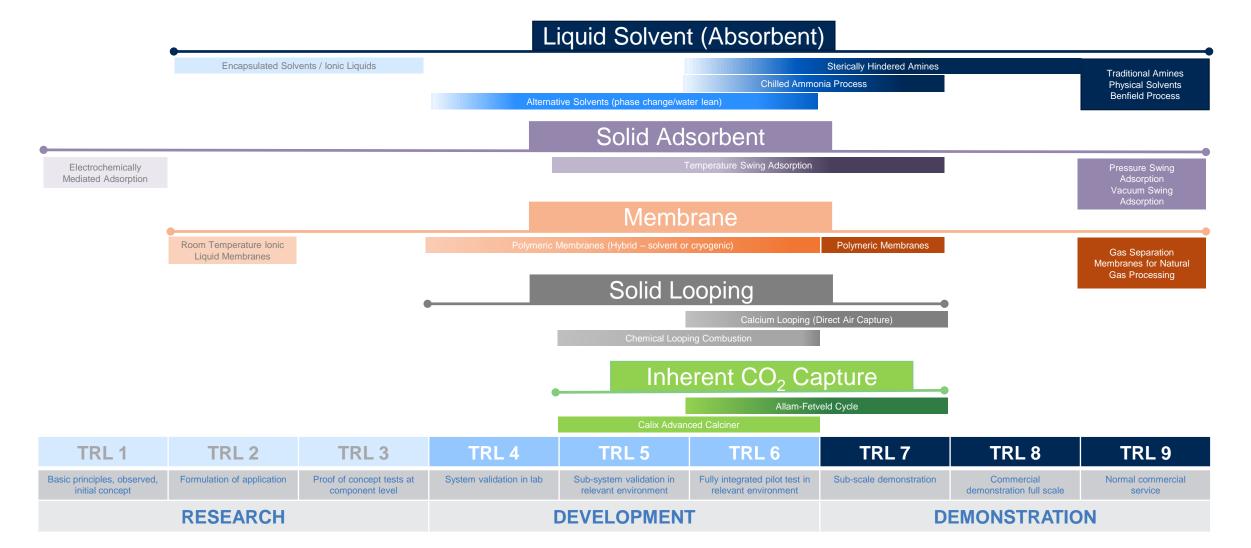
- Uses low temperatures for condensation and separation of CO_2 from flue gases.
- CO₂ can also be separated as a solid or liquid phase.

Membranes – How It Works

- Pressure driven process.
- Driving force dictated by pressure of gas stream.
- Increased separation performance when CO₂ concentration in the feed mixture increases.
- Variety of chemical and/or physical mechanisms for separation.

	Chemical Absorption	Physical Separation	Membranes
Description	Reaction between a chemical solvent and CO2 within a gaseous process stream occurs in an absorption column. Chemical solvent is recovered in a desorption column operating at higher temp.	Either makes use of a solid surface (adsorption), liquids (absorption), cooling and liquefaction (cryogenic), or dehydration.	Based on devices (membranes) with high CO2 selectivity. CO2 passes through but other gases are retained in the gas stream.
Types	Amines • MEA • Other Amines Ammonia Caustics Amino Acid Salts Ionic Liquids Catalysts with Chemical Absorbents Enzymes Other catalysts	Absorption • Organic Solvents • Selexol • Rectisol • Purisol Adsorbents • Zeolites • Activated carbon • Si/Al Gels • Metal Organic Frameworks • Supported Amines • Metal oxides (chemical looping) Cryogenic	Organic • Polymeric • Size selective • Liquids Inorganic • Metallic • Ceramic • Other

- Other non-principal types include Calcium looping, direct separation, electrochemical, algae-based, mineral-based, and mixed or hybrid systems.
- Absorption is both in chemical and physical types because all chemical absorption includes some component of physical adsorbtion and is therefore a mixed technology.


CO₂ Capture Technology Characteristics

	Chemical Absorption	Physical Separation	Membrane Separation
Availability	Many providers for gas processing, but 2 stand-outs in Power CO2 Capture (MHI KS-1 and Shell Cansolv).	Many providers for absorption based solvents for gas processing, but 3 standout Dow (Selexol), Linde (Rectisol).	A few key providers including Schlumberger, MTR.
Application	Retro-fits or New-builds. Gas processing or Post-combustion	Retro-fits or New-builds. Gas processing, ethanol, methanol, hydrogen, or post combustion	Retro-fits or New-builds.
Advantage	Commercially available, wide application.	Wide application. Modular (adsorbents and absorbents).	Wide application, compact, modular. Efficient. Cost reduction potential with hybrid processes. Other potential separation applications.
Disadvantage	Energy required to regenerate solvent, limited cost reduction potential.	Not as economical in comparison to amines for low CO2 concentrations / partial pressures	Operating performance and lifespan. Requires additional differential pressure across membrane.

• However Technical Readiness Levels vary.

Capture Technology Maturity

Gaffney Cline

CO₂ Capture Challenges

Existing Facilities

There are a number of challenges when developing CO_2 capture on existing plants, typically:

- CO₂ emission source pressure, temperature and impurities.
- Source stream CO₂ concentration.
- Land availability.
- Facility layout.
- Plant integration.

Low CO₂ partial pressures impact equipment size, energy consumption, and capture technology choices.

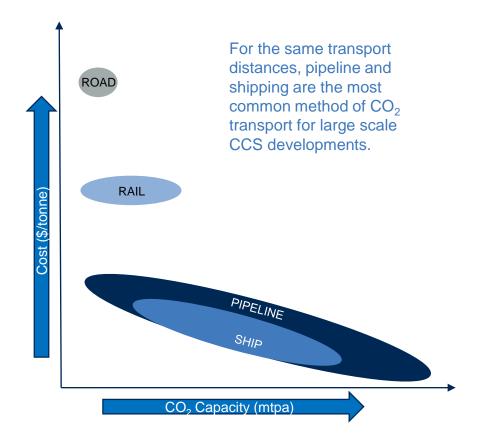
CO₂ Transportation Comparison

PIPELINE

High CAPEX, low OPEX
Excellent for both point-to-point and hub based developments
Large capacity, current largest single pipeline up to 16 mtpa capacity
Proven for large scale CCS
Low fugitive emission losses

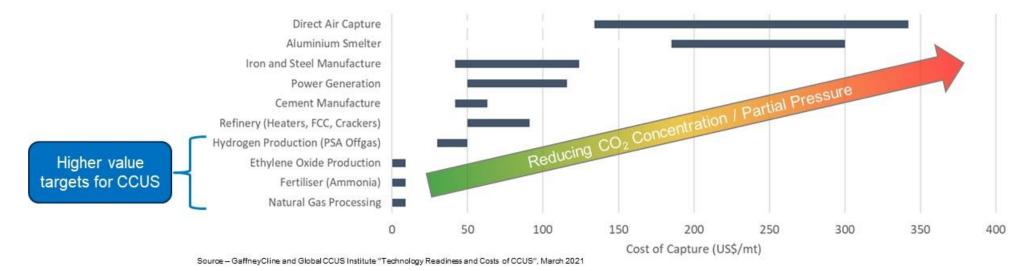
SHIP

Lower CAPEX than pipeline, higher OPEX


Normally combined with some pipeline infrastructure for developments
 Provides flexible commercial opportunities for developments and breaks the value chain
 Current ships are designed for up to 10,000m³, but large scale ships are being developed
 Low fugitive emission losses

RAIL

Limited capacity
Only viable if rail networks exist between source and sink for CO₂
More suited for CO₂ supply to industrial users
Higher fugitive emission losses than pipelines and shipping
Limited suitability for CCS developments


ROAD

Only suitable for very small capacities
More suited for CO₂ supply to small industrial users
Higher fugitive emission losses than pipeline and shipping
Not suited to large scale CCS developments

Comparative Costs of Capture, Transport and Storage

Typical Capture Costs US\$/t (Excluding Downstream Compression)

• Within the value chain, costs will vary, but typically:

- Onshore transportation costs are 3-14 US\$/t CO₂
- Offshore transportation costs are 10-15 US\$/t CO₂
- Storage site costs are 3-13 US\$/t CO₂
- Variation in capture cost driven by CO2 partial pressure.
 - For high pressure and high purity, capture cost can be relatively small.
- For most point sources, capture will account for the majority of the overall cost of CCUS.
- Careful evaluation of the value chain technical elements is required to drive costs down. This combined with the tax credits and/or grants available can provide positive outcomes for CCUS opportunities.

Oil and Gas Facility Re-Use for CCS

- Existing oil and gas facilities infrastructure have the potential to be re-used for CO₂ transportation and storage but must be evaluated on a case by case basis.
- Elements of infrastructure can include:
 - Pipelines
 - Platforms, including jackets
 - Subsea Manifolds
 - Umbilicals
 - Onshore facilities and pipelines.
- Reduces CAPEX and OPEX.
- Some considerations though see next slide.

Oil and Gas Facility Re-Use for CCS

- Pipeline considerations:
 - Sufficient size and pressure rating
 - Pipeline integrity and life extension study including detailed internal and external inspection.
- Subsea manifold suitable for re-use provided its location and pipework configuration (including valving, materials, pressure rating, etc.) is appropriate
 - Requires a full integrity and life extension study to confirm technical feasibility.
- Platforms re-use considerations:
 - Original design life / remaining life expectancy.
 - Topside equipment weight required for injection of CO_2 generally lighter than for oil/gas.
 - Complexity of removal of existing oil/gas production equipment and other brownfield modification work.
 - Practicalities and costs of modification work carried out offshore.
- Umbilicals re-use highly dependent on individual asset requires case by case assessment incl:
 - Conditions and maintenance
 - Capacity
 - Remaining design life.
- Onshore facilities limited, but potential for re-use of existing site footprint, supporting infrastructure and utilities.
 - Existing skilled workforce could reduce upfront investment costs.

Commercial Aspect of CCUS – Project Risk Overview

CCS Business Model Risk Overview

Capture of ower Risk ower Risk **High Risk** Take delivery Aggregation EOR and Sequestration 1edium Risk **Aedium Risk** of already in Aquifer or other forms of CO2and depleted HC captured CO2 transportation CO2 usage reservoir / other Structural risk arising from Limited quantities Provided contractual EOR business well Very new / emerging • lack of economic support available, and lack of arrangements for CO2 technology. proven. economies of scale. • E.g. Class II well permit Regulatory and technical for capture. inputs and outputs are Emitters unlikely to give a Economics are clear, risks are similar to applications are well uncertainty exist. contractual commitment challenging in many gas pipeline model. Long term liabilities are a proven. for CO2 supply. Higher technical risks Limited sequestration major consideration. situations. Significant liability issues Contractual volume arising from long term potential compared to Agencies may be slow to surrounding impact of commitments may be low, CO2 transportation / permanent measures. provide required permits. Significant cost capture on emitting plant given variability of CO2 corrosion. incentives may have operations. Long term investment downside risk (e.g. 45Q) differences exist between stream. requires long term CO2 storage mediums. throughput commitments from gathering zone.

• Generally, each project will be unique and will require bespoke Business Model Risk Assessment

Snapshot Segment Risk Analysis - Capture

YS Capture of CO₂ UDIH

Primary Risks

- Insufficient economic rent to support costly capture equipment.
- High tariff for aggregations / sequestration adding to economic burden.
- Take or pay commitments to aggregation and storage providers.
- Third party consequences from capture equipment (high opex, lower efficiency, facility owner exposed to other indirect costs).
- Technology risk.
- Liability and insurance.

Possible Mitigations

- Increased incentive/carbon price and / or stacking potential from eg Low Carbon Fuel Standard (LCFS), Hydrogen or Canadian Clean Fuel credits.
- Aggregation and storage tariff guaranteed through very low cost route.
- Optionality on volume commitment.
- Limited liability / indemnity from plant owner.
- Evolutionary development plan, incorporating new technologies as needed.
- Performance guarantees from EPC contractor / equipment provider.

Snapshot Segment Risk Analysis – Geological Sequestration

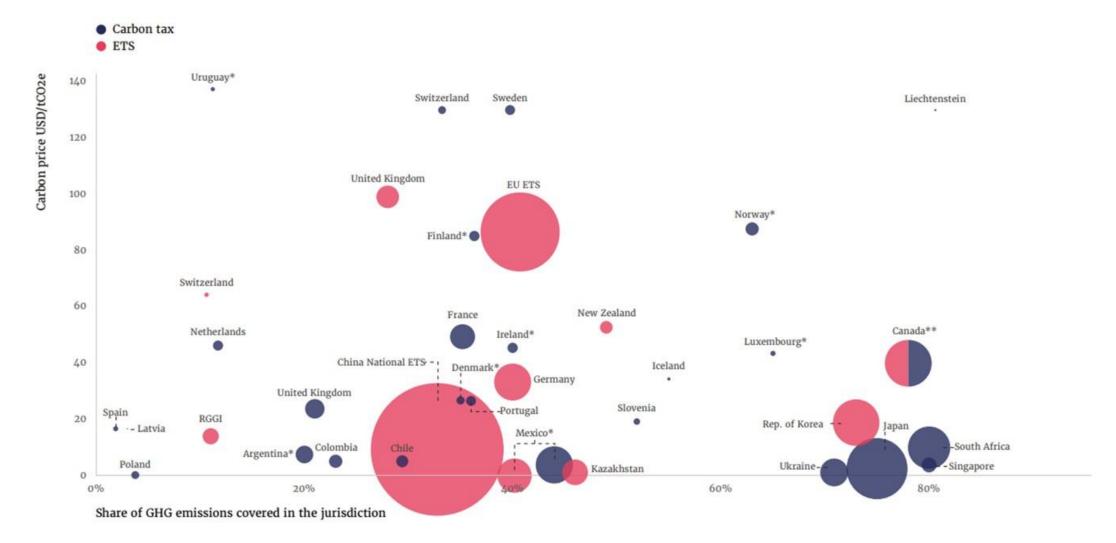
Primary Risks

- Ongoing regulatory uncertainty concerning long term liabilities for secure storage
- Rights to pore space
- Schedule risk arising from well permits and other features
- Technical features of sub-surface performance (injectivity, capacity and integrity)
- CO2 plume movement and monitoring

Possible Mitigations

- Further regulatory clarification / development and /or investment where State guarantees are offered
- Clean surface/mineral rights covering entire sequestration site
- Conditions Precedent regarding regulatory approvals and permits
- Detailed technical due diligence and ongoing monitoring to amend development plan if needed

• Different projects may carry differing Business Model Risk Assessment

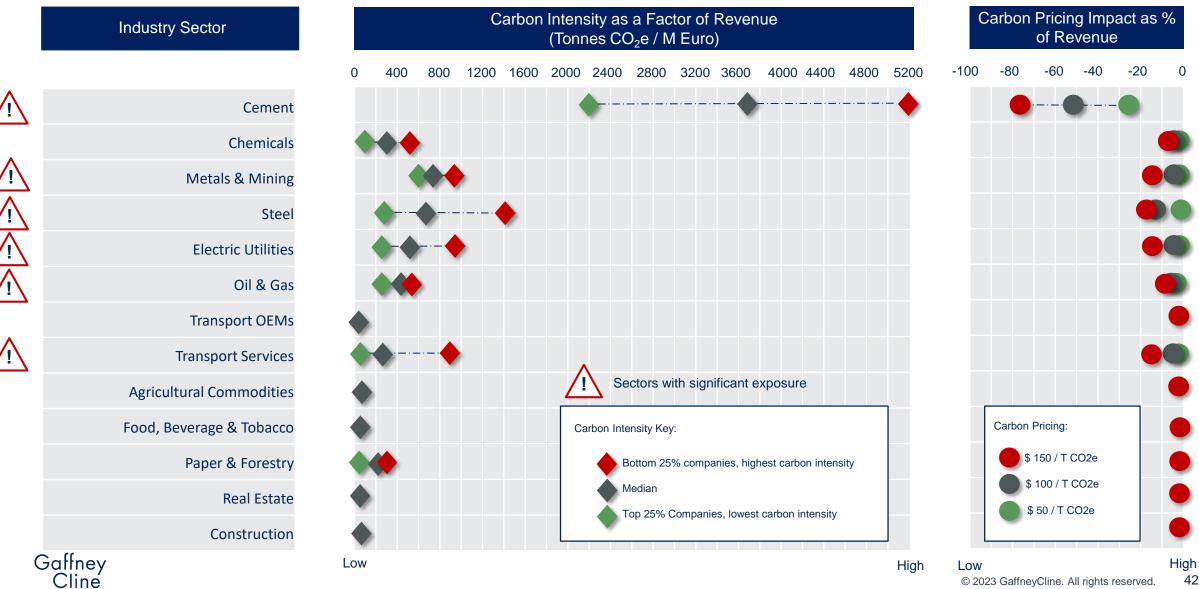

Commercial Aspect of CCUS - Carbon Pricing

Carbon Pricing/Valuing Mechanisms

- A carbon tax puts a direct price on GHG emissions and requires entities to pay for every ton of carbon pollution emitted.
- An emission trading system (ETS)—also known as a cap-and-trade system—sets a limit ("cap") on total direct GHG emissions from specific sectors within the jurisdiction and sets up a market where the rights to emit (in the form of carbon permits or allowances) are traded.
- Under a crediting mechanism, emissions reductions that occur as a result of a project are assigned credits, which can then be bought or sold.
- Under a results-based climate finance (RBCF) framework, entities receive funds when they meet pre-defined climate-related goals, such as emissions reductions.
- Under internal carbon pricing, entities assign their own internal price to carbon use and factor this into their investment decisions.

Coverage of Global Carbon Markets & Pricing Mechanisms

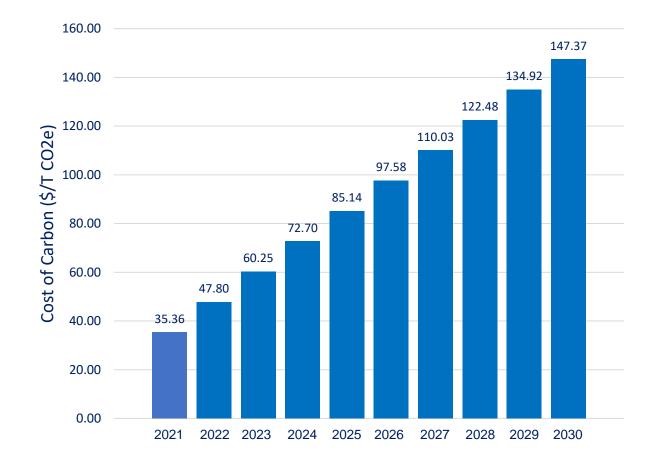
Comparison of Carbon Pricing Mechanisms


ETS / Cap & Trade most complex to implement but should lead to most efficient carbon pricing

	Carbon Tax	ETS / Cap & Trade	Carbon Credit
Principle	Predefined tax rate targeting specific emission sources	Market based allowances traded around emissions limit or Cap	Market based verifiable credits issued which can be monetised to generate income for certified projects
Market Type	Compliance	Compliance	Voluntary
Pricing Certainty	 Pre-defined tax rate Stable price Strong signal for investment 	 Market driven price => volatility Price reflects gap between emissions and cap Hedging may increase volatility 	 Highly dependent upon project quality Largely dependent upon Corporate demand and project availability
Emission Level Predictability	Uncertain - difficult to predict emission reduction with predefined tax rate.	 Good, controlled cap determines upper limit on emissions. 	• Dependent upon the quality of the project and ongoing management of the Carbon sink.

Industry Readiness for Carbon Pricing

Heavy Industrial players most highly exposed to future Carbon Pricing



Netherlands Industry Carbon Tax

NL first to introduce Carbon Tax on Industry which has largely lagged on decarbonisation

Overview					
Established	2021				
Coverage	Netherlands				
Sectors	235 x Industrial Companies				
Scope	Decarbonisation of large Industrials				
Principle	 > Complementary to EU ETS > Emissions capped as per EU ETS > Tax rate predefined and indexed up to 2030 > Tax paid is difference between EU ETS and NL Industry Carbon (indexed) rate 				
Target	Reduction of 14.3 M CO2e by 2030				

Gaffney Cline

43

Carbon Pricing – Key Conclusions

- Geographic coverage of Carbon Pricing limited but growing.
- Range of approaches.
- Heavy Industrial energy consumers most highly exposed to future Carbon Pricing.
- Only a small amount (< 4%) of Global Emissions is within 2030 Carbon Price Corridor recommended by IPCC. Increases in carbon tax likely.
- Increasingly, Carbon pricing integral to Client decision making.
- Emerging investment case for carbon mitigation including CCUS.

Commercial Aspect of CCUS - Legal Framework & Regulation

Global Overview – CCS Policies and Instruments

GHG Emissions Policy and Targets

Implementation of clear and binding National emissions targets to deliver on Paris Climate goals

Examples

- Nationally Determined Contributions (NDCs)
- EU Fit for 55

CCS Legal and Regulatory Framework

Legal and regulatory framework governing the selection, injection, transportation and storage of CO₂

Examples

- UK Oil & Gas regulation of CO₂ storage
- Amended IMO 'London Protocol'

Carbon Pricing Policy and Mechanism

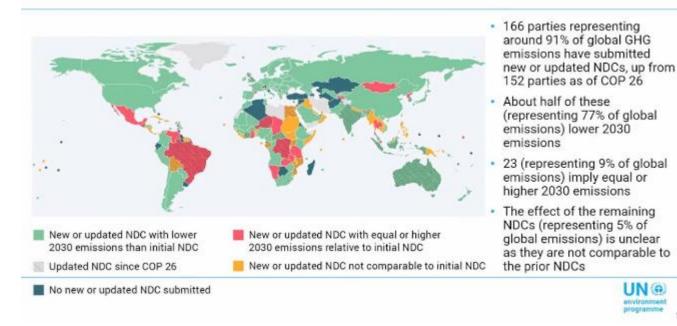
Establishing a cost for CO₂ emissions through Carbon 'Cap and Trade', Carbon Taxation of Carbon Credit

Examples

- EU Emissions Trading
 Scheme
- US 45Q Tax Credit

Carbon Accounting and Verification

Establishing verifiable reporting, accounting and verification of avoided emissions captured and permanently stored


Examples

- EU Certification of Carbon Removals
- CCS+ Initiative

Global Overview – CCS Legislation and CCS in NDCs

- CCS part of NDC plans.
- Multiple different strategies
- No country has exactly same approach.
- Detail is extensive.

Countries' NDCs presented at UNEP's press conference. Graphic: UN Environment Programme.

e.g. EC Legal Framework, CO₂ Storage

Scope

Geological storage (of more than 100ktpa) of CO_2 in EU member states (excludes EOR)

Regulatory framework designed to; minimise risk of leakage, monitoring and reporting regime, ensure adequate remediation

Complete project lifecycle from exploration permit to post closure

Key Principles

Member States retain rights to decide if storage of CO_2 and determine where storage maybe selected

CO₂ sites selected only if no risk of leakage confirmed through technical characterisation and assessment

Operators shall make adequate provisions for financial liabilities

Member States shall ensure third party access to storage in transparent and non-discriminatory manner

Key Stakeholders + Responsibilities

European Commission review and advise on licence and permit applications at 'Early Phase' development

Member States implementation of directive, issuing of penalties for infringement

National Competent Authority governing regulation, issuing of licences and permits, maintain register

Operator of CO₂ storage site until transfer to Competent Authority

Status

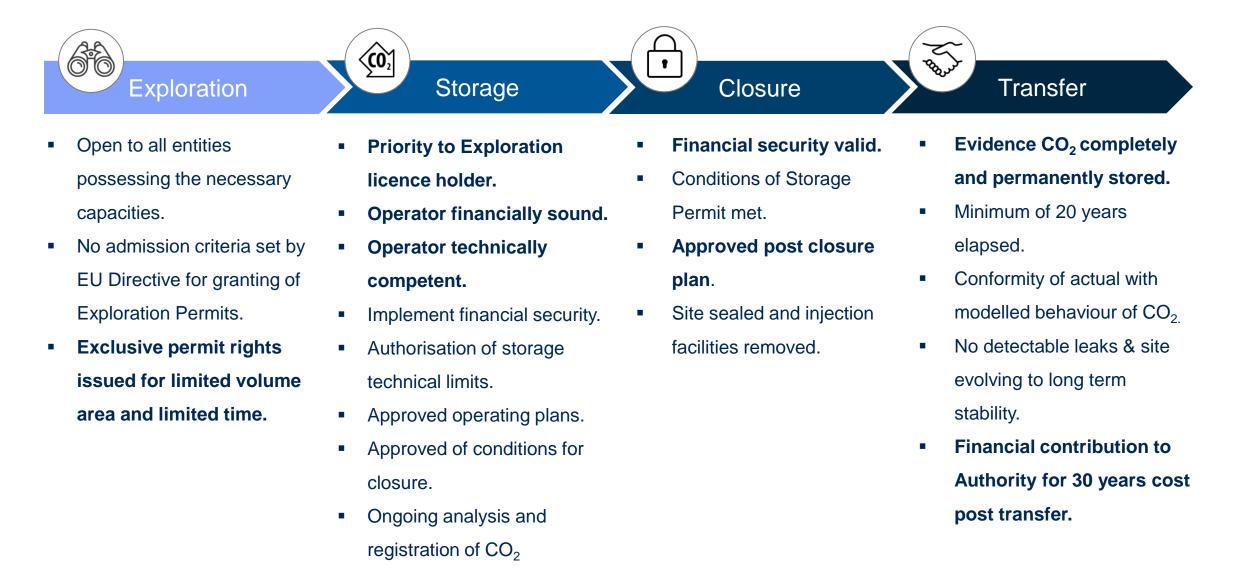
Entered into force in 2009 (amendment made to the previous directives 2000 – 2008)

Every 3 years Member States submit a report on implementation of Directive, next report due 2023

Framework implemented by 19 countries Bulgaria, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Lithuania, Luxembourg, Malta, Netherlands, Portugal, Slovakia, Spain, Sweden and UK

Key Activities of Project Lifecycle - EC Legal Framework, CO₂ Storage

- storage.
- Assess storage capacity.
- Injection testing.
- Site selection.


- Routine annual inspection of surface and injection facility.
- Non-routine inspection by Authority.
- Monitor storage.
- Monitor surrounding environment.
- Annual reporting.

- Monitor storage.
- Monitor surrounding environment.
- Reporting every 3 years.

- Monitor surrounding environment.
- Reporting every 5 years.

Key Permit & Operating Obligations - EC Legal Framework, CO₂ Storage

composition & properties.

Gaffney

Cliné

Obligations and Liabilities - EC Legal Framework, CO₂ Storage

 Member State retains right to determine if and where CO2 storage locations maybe selected.

Exploration

676

- Member State shall decide if Exploration required.
- In the event of leakage Operator shall take corrective actions and forfeit Carbon allowances under ETS.

Storage

(0)₂

- In event Operator fails to act, Competent Authority shall; withdraw the permit and take over operational and legal responsibilities.
- Operator shall responsible for inspections, monitoring, reporting & corrective action.

 Operator responsible for sealing storage site and removing injection facility.

Closure

- Operator continues responsibility for and financial provision of inspections, monitoring, reporting & corrective action until transfer.
- Authority responsible for inspections, monitoring, reporting & corrective action.

Transfer

N ADD

Operator shall make
financial contribution to
cover Authority's costs for
inspections, monitoring &
reporting.

Licencing Overview - 2022

- Equinor and BP awarded licences in UK.
- UK launched first CCS storage licence round. Awards in 2023.
- 3 storages licences awarded in Norway.
- Class VI wells in US primacy moving to States from EPA accelerated approvals expected.
- Danish defined area CCS applications opened. Award in 2023.
- Storage permit awards in Australia for CCS acreage.
- Globally progressing.

Final Comment – Progress is being made but much still to do.

Back-Up Slides

GaffneyCline - CCUS Project References

UAE CO ₂ Storage Assessment		National Strategic Planning of CCS		US Gulf CO ₂ Storage Facility			US Industrial CO ₂ Cluster		
Location: Client: Year:	UAE NOC 2021	Location: Client: Year:	Middle East NOC 2021	Location: Client: Year:	US Gulf Coast Confidential 2021		Location: Client: Year:	US Investor 2021	
Project Description: Assess and estimate CO2 storage potential of depleted hydrocarbon reservoirs, shallow unconventional gas reservoirs or saline aquifers in Abu Dhabi. Provide recommendations for the subsequent in- field injection and related operations.		Project Description: Assess overall unit cost of Carbon Capture and Storage of emissions from major sources within the country		Project Description: Assess viability of CO ₂ storage facility			Project Description: Project Due Diligence for industrial capture, aggregation and sequestration of CO ₂ emissions		
Services Provided:		Services Provided:		Services Provided:			Services Provided:		
 Screening and identification of reservoirs and aquifers for safe CO₂ storage 		 Screening and identification of aquifers for safe CO₂ storage 		 Technical due diligence on CO₂ storage facility 			 Estimation of capital costs across entire CO₂ value chain from source to sink 		
Assess storag containment ris	• Assess storage capacity, injectivity and tainment risks		 Estimation of CO₂ storage supply/demand scenarios 			Assessment of alternative technologies and estimated costs			
 Conceptual engineering of CO₂ storage pilot Estimation of capture, transportation and storage costs 		Establish storage merit curve to assess relative economic viability of the facility			 Assessment of availability of support from tax credit and impact on investment case 				
Recommendation	tion on monitoring and risk		ation on optimized phased opment approach						
Economic analysis of utility type model									

GaffneyCline – CCUS Project References

UK CO ₂ Storage Project Technical Advisor		CCUS Project Diligence		Russia CO ₂ and Develop	Storage Assessment	Indonesia Assessment of CO ₂ Storage in depleted Gas Field			
Location: Client: Year:	UK Government - DECC 2016	Location: Client: Year:	Europe Industrial 2021	Location: Client: Year:	Russia Oil & Gas Major 2021	Location: Client: Year:	Indonesia Mid-Size Independent 2021		
Project Description: Technical assurance to enable Department of Energy and Climate Change (DECC) to evaluate the two bids and to take a Final Investment Decision on the Peterhead and White Rose Carbon Capture and Storage projects.		Technical ass taking CO2 fro petrochemical Hydrogen Ste (SMR's) to off	Project Description: Technical assessment of CCUS project taking CO2 from several refinery and petrochemical facilities including 'blue' Hydrogen Steam Methane Reformers (SMR's) to offshore CCS in depleted gas field in the North Sea.		Project Description: Screening and selection of depleted reservoirs and aquifers for storage of CO ₂ captured from adjacent gas processing plants and proposed blue ammonia project		Project Description: Assess viability of depleted gas field as a potential store for CO ₂ captured from coal fired power plant		
 Services Provided: Review of the geoscience, reservoir engineering, wells and offshore facilities and pipeline Review of the design basis, monitoring and review of the FEED and evaluation of bids 		Review of a Assess sto containmen Recommen	 Services Provided: Review of subsurface and surface data Assess storage capacity, injectivity and containment risks Recommendations on project viability and development risks 		 Services Provided: Screening reservoirs and aquifers for safe CO₂ storage Review subsurface data in accordance with ISO27914 Development of reservoir conceptual engineering Developed client CO₂ storage plan for permit and licensing submission 		 Services Provided: Assess reservoir storage capacity, injectivity and containment risks Review subsurface data in accordance with ISO27914 High-level estimate assessment of the unit cost of CO₂ capture, transportation and sequestration 		