Carbon Capture and Storage Quantifying Geological Storage

> Presented by Shane Hattingh 31st January 2023

Presenter

Shane Hattingh

Role and Experience

- GaffneyCline Technical Director (Reservoir Engineer)
- 36 years of experience with mining and petroleum companies, research and consulting
- Geoscience and reservoir engineering background with worldwide experience
- Current focus on integrated studies, Resources reporting and CCUS projects
- Has been involved in ~15 CCUS projects worldwide

Professional Involvement

- Member of SPE, SPEE, IOM3 (Institute of Materials, Minerals & Mining) and SAMOG (The South African Code for the Reporting of Oil and Gas Resources)
- Fellow of the Energy Institute
- Previously board member of SPEE (2020 2023)
- Member of SPEE Reserves Definitions Committee
- United Kingdom Chartered Scientist

Education

- PhD. Applied Mathematics, University of Cape Town, South Africa
- MSc. Solar Terrestrial Physics, University of Natal, South Africa
- BSc Hons. Geophysics, University of the Witwatersrand, South Africa

Disclaimer Statement

The material and views expressed in this presentation are those of the author.

The presentation material has been prepared responsibly and carefully, but no warranty, expressed or implied, is given that the information is complete or accurate nor that it is fit for a particular purpose. All such warranties are expressly disclaimed and excluded.

Attendees are urged to obtain independent advice on any matter relating to the interpretation of CO_2 storage and reporting.

© 2023 GaffneyCline. All rights reserved. Terms and conditions of use: by accepting this document, the recipient agrees that the document together with all information included therein is the confidential and proprietary property of GaffneyCline and includes valuable trade secrets and/or proprietary information of GaffneyCline (collectively "information"). GaffneyCline retains all rights under copyright laws and trade secret laws of the United States of America and other countries. The recipient further agrees that the document may not be distributed, transmitted, copied or reproduced in whole or in part by any means, electronic, mechanical, or otherwise, without the express prior written consent of GaffneyCline, and may not be used directly or indirectly in any way detrimental to GaffneyCline's interest.

Simplified Schematic of Geological Storage

"CCS is the process of capturing and storing CO_2 before it is released into the atmosphere"

London School of Economics

Geological storage is the placement of CO_2 in deep geological formations where it remains safely isolated from the atmosphere.

The three principles of geological storage:

- A. Quantity how much CO₂ can be stored?
- B. Injectivity how easily can CO₂ be injected?

C. Containment - how safely can CO₂ be stored?

This presentations focusses on estimation of storable quantities in saline aquifers and depleted gas reservoirs.

Source of diagram: https://www.globalccsinstitute.com/wp-content/uploads/2018/12/Global-CCS-Institute-Fact-Sheet_Geological-Storage-of-CO2.pdf

Contents

1. Physical properties of CO₂

2. CO_2 storage in aquifers

- Trapping and immobilisation
- Efficiency factors and the role of simulation
- Examples

4. CO₂ storage in depleted gas reservoirs

- Material balance theory and a worked example
- Some case studies (involving simulation)
- 5. Summary: Depleted Reservoirs vs Aquifers
- 6. Discussion

Physical Properties of CO₂

CO₂ Phase Behaviour for Reference

Cli

ltem	Temperature	Pressure
Triple Daint	-56.7 degC	5.1 atm
Triple Point	-70 degF	75 psia
Critical Daint	31 degC	72.9 atm
Chlical Point	88 degF	1,071 psia

 CO_2 storage quantities are usually quoted as follows:

Storable quantities ("capacity"):

- Mt: Mega tonnes, or millions (10⁶) of metric tonnes
- **Gt**: Giga tonnes, or billions (10⁹) of metric tonnes

Injection rates:

Mtpa: Mega tonnes per annum, or millions of tonnes per annum.

t = tonne ("metric ton") = 1,000 kg

CO₂ Density, Temperature and Pressure

Important points:

- 1) Density increases sharply with pressure above the critical point but is less sensitive at high pressure.
- 2) Density decreases with increasing temperature and is sensitive over a wide range of pressure.

 CO_2 density is very important in any CCS project because it determines the efficiency of use of the storage pore space.

The higher the density, the more molecules we can fit into a given pore space

Useful website: <u>https://webbook.nist.gov/chemistry/fluid/</u> which uses CO₂ properties from: **Span, R.; Wagner, W. (1996).**

CO₂ Density, Temperature and Pressure

What happens as we penetrate the subsurface:

- Pressure increases: CO₂ becomes more dense
- Temperature increases: CO₂ becomes less dense
- T and P effects act against each other
- Therefore, storage at increasing depth has diminishing benefit.
- Most efficient utilization of storage volume:
 - Pressure range ~1,200 psia to ~2,000 psia (~840 m to ~1,400 m) in "normal" temperature gradient environment (min ~760 m).
 - Density close to that of a liquid and viscosity close to that of gas.
- Be aware that small variations in temperature can have a big impact on CO₂ density

CO₂ Phases and Density- Some Observations

• Conversion from mass (Mt) to volume (10⁶m³) at standard conditions is easy:

$$Vol = \frac{Mass}{0.00187}$$

- CO₂ density at STP of 60 degF and 14.7 psia is 0.00187 t/m³. or 1.87 kg/m³
- With density as the starting point, the gas expansion factor can easily be computed:

$$E = \frac{\rho_{reservoir}}{\rho_{surface}}$$

- CO_2 can have a high expansion factor, often higher than natural gas.
- In a depleted gas reservoir, you can theoretically store a larger volumes of CO₂ (expressed at surface conditions) than the volume of HC gas (also expressed at surface conditions) that was extracted.
- In a recent study, the natural gas had an expansion factor of 250 svol/rvol with CO₂ at 350 svol/rvol, so it was possible to replace natural gas at a ratio of 1.4 : 1.0.

CO₂/CH₄ Expansion Factor Ratio as a Function of Depth

Assumptions:

Surface temperature:

- 10 degC (50 degF).
- Temperature gradient:
- 30 degC/km (54 degF/km).
- Pressure gradient:
- 0.433 psi/ft.

Gaffney Cline

Results are affected by:

- Actual composition of HC gas
- Contamination of injection stream
- Anomalous temperature gradient

CO₂ Storage in Aquifers

Aquifer Trapping and Immobilisation

1. Geologic trapping (structural and stratigraphic)

- High concentration of CO_2 in suitable structures.
- CO₂ stored as "free phase".
- Seal risk.

Gaffney

Cline

2. Residual trapping

- Occurs when CO₂ migrates over long distances, displacing brine.
- Brine imbibes into the CO₂ plume until the free phase CO₂ is immobilised at its residual saturation (Sgr).
- The more contact with rock the better.

Aquifer Trapping and Immobilisation

3. Solubility trapping

- CO₂ progressively dissolves in brine and becomes immobilized
- The more contact with water the better.
- Solubility is greatest at:
 - Low salinity
 - High pressure
 - Low temperature

4. Mineral trapping

- CO₂ dissolves in brine and alters chemistry, leading to dissolution of some minerals and precipitation of new minerals
- Very slow and mostly ignored, but very secure

CO₂ Immobilisation over Time

- Different CO₂ immobilisation mechanisms work to increase storage security over time
- Several mechanisms continue to operate long after the end of the injection period.
- What is the fate of free phase CO₂ in an open aquifer?

Good dynamic modelling is important:

- Sensitivity analysis
- Alternative scenarios and realisations

Aquifers – The Volumetric Equation

The storable quantity of CO₂ in an aquifer "container" can be estimated with the following volumetric equation:

 $CO2Msto = PV * EF * \rho CO2sto$

Where:CO2Mstomass of CO_2 that can be stored at the final storage pressure of the container [metric tonnes].PVpore volume of the storage container [m³].EFefficiency factor - defined here as the ratio of the volume of CO_2 injected into an aquifer, to the net pore volume of the aquifer at the final storage pressure. (Think of it as the saturation of CO_2). $\rho CO2sto$ density of CO_2 at the final storage pressure of the container [tonnes/m³].

Two important considerations:

- 1. Mechanism for trapping and immobilisation of CO_2 .
- 2. Nature of the container.

Types of Aquifer Storage

		Open Aquifer	Confined Aquifer		
EF = (1 - Swir) (max) Expect EF ~ 30 to 40% of structure PV. Increase by spilling out.	Geologic trapping	CO ₂ displaces water and is physically trapped in mobile state. Pressure dissipates.	CO ₂ is physically trapped in mobile state. Pressure increases.	Geologic trapping	$EF = C_t * \Delta P$ Expect EF ~ 0.5% Increases with dissolution. Increases with depth Increase with brine extraction.
No simple expression for EF. Reported EF ranges typically 0.5% to 7% , (or more). Definition of container determined by	Solubility & residual	CO ₂ forms a plume, becoming immobilised. Pressure dissipates.	CO ₂ forms a plume, becoming immobilised. Pressure increases.	Solubility & residual	Similar to adjacent case but pressure increases.
development plan.		Open Aquifer	Confined Aquifer		

Efficiency Factor in Open Aquifer – Analytical Estimates

Fig. 2.22 Storage efficiency, ε , as a function of mobility ratio, λ_r , and gravity factor, Γ from Okwen et al. 2010)

Diagram from: Ringrose, 2020.

Galfney

Cliné

Layers increase CO₂ contact with water and provide more opportunities for immobilization

Qualitatively:

- High mobility ratio (low CO₂ viscosity) leads to low EF.
- In most aquifers gravity forces will ultimately prevail over viscous forces.
- High gravity forces (low CO₂ density) cause CO₂ to override water and lead to lower EF.

18

Efficiency Factors - What Does it Mean?

From SRMS (2017):

Storage Efficiency: Fraction of the Storage Capacity, Storage Resource, total pore volume, effective pore volume, bulk volume, and/or storable quantity expected to be used for storage by a specific project. May be based on actual injection, planned project, or a regional assessment. The basis for the storage efficiency must be clearly identified and documented. Six possible interpretations!

Worked examples

- Regional evaluation in GCC efficiency factors
- Case study in UAE simulation

GCC Study Area and Definitions

Potential carbon sinks of two types in saline aquifers.

- 1. Rub'al-Khali Basin: Large, long-lived sedimentary basin on the northeastern flank of the Arabian Platform, in part forming the foredeep of the Zagros and Oman Mountains
- 2. "Geological storage" sequestration by **direct mineral reaction** with the rocks that comprise the Oman **ophiolite**. Obducted oceanic crust on the Oman continental margin.

Gaffney

Cliné

"*CCUS deployment challenges and opportunities for the GCC*" (Gulf Cooperative Council: Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates), January 2022. A report prepared for the OGCI by AFRY and GaffneyCline

21

Stratigraphic Column & Storage Plays

- Overall setting is widespread, long-lived passive margin platform, with extensive reservoir and seal units.
- Potential storage complexes are numbered 1 to 11 (Example 1 is discussed here).
- Each is identified by a prominent reservoir and seal.
- They may be the basis of a recognised petroleum play, or recognised potable aquifer system.

					•	
	Ge	ologic age	Group	Stratigraphic unit	Lithology	
	٨RY	PLIOCENE MIOCENE		Undifferentiated		
	I È	FOCENE	< <	Damman		_
	ER	PLIQCENE	AS	Rus Um Er Badhuma		
	_ ⊢	TEIGGEINE	I	on Er naanana		
		UPPER	RUMA	Aruma	Histor	
			_	Mishrif		
				Rumaila		
	S		⊴	Ahmadi		2
		MIDDLE	AS	Wara	· 전문(한 단)한 단) 한 단) 한 단 한 한 ()	-
	ы		l S	Mauddud		
	AC			Nahr Umr		
				Shu'aiba		3
	E E		⊴	Hawar		0
	0		L ≥	Kharaib		4
		LOWER	ž –	Ratawi		4
			I I I	Yamama		
			⊨	Sulaiv		
			L	Lieb		
			L I	Hith		
				Arab		5
		UPPER	∣ ≽	Arab		9
	1 22		<u> </u>	luk allak		
	SS		1	Jubalian	<u>╡╾┼╸┧╺╴╴╷╸╴┰╺╴╴╷╺╵╸╷╸╷</u> ╸┰	
	₹ I			Tuwaig Mountain		
	5	MIDDLE	d			~
			A	Dhruma		6
			l ≧			-
			コピー	Marrat		
		LOWEN				
	<u>c</u>	UPPER		Minjur	Hiatus	7
	SS	MIDDLE	l 🕰	Jilh		1
	RIA		1 55	Sudair		
		LOWEN	L L	Sudair		
	~	LIPPER		Khuff		8
	A I	GIFER				
	Σ					
	E E		1			
	8	LOWER		Unayzah		
					Silurian Hiatus	
	—		l	lub a b		
	1			Jupan		
		DEVONIAN		Jaur	<u>}</u>	0
	—		L	lawii		9
				0.111.1	- Quisatha Mbr	
	EAR	LT SILURIAN		Qalibah	- "hot shale"	4.0
	ORDOV	ICIAN-CAMBRIAN		Qasim/Saq	literation	10
	-16	FRACAMBRIAN"	—	Pre-Sag/Hormuz		11
	PRI	ECAMBRIAN		Basement	111111111	
			1			
Basement	Sandsto	ne Shale	Li	mestone De	olomite Anhudrite	Salt
			2.		, 100	

From: Vahrenkamp et al., 2021

22

Umm er Radhuma (UER): Storage Play Fairway Map (Example 1)

- Shallow play in part in key 1,000-2,500m burial zone
- Limit of Rus seal not a critical controlling factor
- No lithological controls recognised

Gaffney

Cliné

 Widespread potable aquifer, so minimum salinity recognised as key control

and opportunities for the GCC

• Storage play fairway in centre of Rub'al-Khali Basin in UAE, Saudi Arabia and Oman

From: OGCI Report: CCUS deployment challenges

Conclusions: Density of Storage Play Fairways

- Up to 6 storage plays are present in one location
- Map is colour-coded, depending on play diversity
- Highest density in onshore UAE in axis of Rub'al-Khali Basin
- Significant "hot spots" also in western Oman, Kuwait and northwestern Saudi Arabia
- Note that this does not take into account:
 - varying storage play risk
 - the storage volume potential

Estimation of Storable Quantities

Saline aquifers

- Volumes estimated stochastically from ranges of 6 input parameters
- Totals provide indicative range of total storage potential within saline aquifers
- Key uncertainty is storage efficiency
 that can be achieved (assumed range
 1% to 6%)

Ophiolites

 As estimate of 8.2 Gt was made for the ophiolites

25

Case Study in UAE – Dynamic Modelling

Gaffney Cline

Case Study – Location Maps Onshore Abu Dhabi

The aquifers are in a syncline, meaning that there is not much chance of structural trapping and reliance must be placed on immobilisation.

Fig. 2. (a) Top Shuaiba structure map in the Falaha syncline (orange line with converging arrows) and surrounding anticline structures (producing fields) (b) Area of interest of this study covering the main onshore oilfields UAE.

Case Study – Aquifer Properties

Table 1

Base Input Parameters for numerical simulations.

Parameter	Units	Simsima	Dammam	UER	Shuaiba
Average Porosity	fraction	0.2167	0.2516	0.2808	0.11
Average Permeability	md	66.06	87.49	161.9	4
Temperature	F	200	200	200	200
Injection duration	years	100	100	100	100
Salinity	ррт	100,000	100,000	100,000	100,000
Rock Compressibility	psi^{-1}	$1 imes 10^{-6}$	1×10^{-6}	1×10^{-6}	$1 imes 10^{-6}$
Initial Reservoir Pressure	psi	3000	900	2000	5000
Maximum Injection Pressure	psi	3900	1200	2500	6500

- Shuaiba would rank low, due to low porosity, low permeability and very high pressure (costly wells)
- UER would rank high, due to high porosity, high permeability and ideal pressure
- Dammam has initial pressure below critical.
- Study focused on the deeper reservoirs, (Simsima and the Shuaiba), because of their lower potential impact on surrounding fields

Case Study – Workflow

The study used CMG's GEM software. The priorities for estimating storable quantities are:

- **1. Where will the plume go?** (free phase CO₂)
 - Run simulations with two immiscible phases.
- 2. How much CO₂ will dissolve? (free phase CO₂ and solubility)
 - Run case 1 but include solubility.
- **3.** What is the residual trapping component **?** (free phase CO₂ and residual trapping)
 - Run case 1 but include residual trapping (relative permeability end points).
- 4. Combine all processes
- 5. How much CO₂ remains in the "free phase" and what is its long term fate?

By running sensitivities with different components individually we get an idea of the significance and uncertainty inherent in each. By combining them into a single run we understand the interactions.

Case Study – Dynamic Modelling

Injection was into a single well completed deep in each formation.

Main Results:

- At early times, dissolution is the main immobilisation mechanism.
- As CO₂ attains its solubility limit, the amount of trapping provided by this mechanism diminishes.
- The supercritical CO₂ moves upwards via gravity segregation and is trapped by the cap rock. In this migration, brine displaces CO₂, which leads to gas trapping in the pores of the rock.
- After injection, migration of brine into the plume becomes rapid and the amount of gas trapped via residual trapping increases.

Diagram shows contribution of immobilisation processes for Shuaiba and Simsima combined

Case Study – Volumetric Estimates

Table 3

Storage capacity estimates.

Formations	Storage Mass (Million Tonnes)		
	CSLF	DOE	Zhou (closed)
Dammam	1737	1895	128
UER	8455	8898	1050
Simsima	5003	5459	1140
Shuaiba	876	956	321

CSLF: Carbon Sequestration Leadership Forum DOE : United States Department of Energy Zhou: (see ref). Dependant on depth Volumetric estimates of storable quantities based on published Efficiency Factors and Monte Carlo simulation:

- CSLF: 1.41% 2.04% 3.27%
- DOE: 0.51% 2.00% 5.50%
- Zhou: 0.2% to 0.8% estimated

Dynamic modelling showed the following storable quantities:

Shuaiba: 960 Mt (EF~2%)

CO₂ Storage in Depleted Gas Reservoirs

Conversion of Depleted Gas Reservoir to CO₂ Storage

Cliné

Derivation of the Material Balance Equation

The material balance equation is derived by following six steps:

- 1. Estimate hydrocarbon pore volume at initial pressure (Pi): $HCPVi = GRV * NTG * \emptyset * (1 - Swir)$
- 2. Estimate GIIP:

GIIP = HCPVi * Ei

- 3. Estimate volume of HC gas remaining at abandonment pressure (Pab): GIPab = GIIP - Gp
- Estimate pore volume occupied by remaining HC gas at storage pressure (Psto):
 HCPVsto = GIPab/Esto
- 5. Estimate pore volume available for CO₂ at storage pressure (Psto); COPVsto = HCPVi - HCPVsto
- 6. Estimate mass of CO2 that can be stored at storage pressure (Psto): $CO2Msto = COPVsto * \rho CO2sto$

Depleted Gas Reservoirs- Material Balance

Combining the equations set out above leads to the following general material balance equation:

$$CO2Msto = \left(\left(GRV * NTG * \emptyset * (1 - Swir) \right) * \left(1 - \frac{Ei}{Esto} \right) + \frac{Gp}{Esto} \right) * \rho CO2sto$$

Where:

CO2Msto mass of storable CO2 if the reservoir is returned to any pressure [metric tonnes].

GRV, NTG, Ø, Swir gross rock volume [m³], net-to-gross ratio [fraction], porosity [fraction] and irreducible water saturation [fraction].

- HC gas expansion factor at storage pressure [sm³/rm³]. Esto
- ρCO2sto density of CO2 at storage pressure [tonnes/m³].

If the reservoir is restored to the original pressure by CO_2 injection, then the above equation becomes:

Where:

Cliné

- mass of storable CO_2 if the reservoir is returned to its original pressure [metric tonnes]. CO2Mi
- volume of HC gas that has been produced at surface temperature and pressure [m³]. Gp
- initial HC gas expansion factor [sm³/rm³]. Ei
- density of CO_2 at the original reservoir pressure [tonnes/m³]. pCO2i

Initial reservoir pressure.

HC gas PVT.

Initial reservoir temperature.

Limitations of the Basic Material Balance Equation

The material balance equations shown above do not account for:

- Decreases
- ✤ Aquifer influx can be very large.
- Heterogeneity can be large.
- Condensate drop out can be large in some cases.
- Impurities in injectant.
- Hysteresis in pore volume compressibility expected to be small.
- Utilisation of aquifer surrounding pool potentially large.
 Dissolution in connate water small.
- Other

Gaffney Cline

- Thermal effects.
 - Mixing with remaining HC gas (mixing, banking, segregation).
 - Vaporization of connate water (with salt precipitation).

Dynamic simulation can be used to address most of these points.

 These points can to some extent be accounted for by expanding material balance.

Reservoir Information

Reservoir Properties			
Parameter	Value	Units	
GRV	750	mil rm3	
NTG	0.85	fraction	
Porosity	0.2	fraction	
Water saturation	0.2	fraction	
Permeability	50	mD	
Reservoir depth	1,408	m	
Reservoir temperature	160	degF	
Reservoir pressure	2,015	psia	
GIIP	477	Bscf	

- Good quality sandstone
- Fault bounded on four sides
- Dry gas
- Developed with four wells
- Volumetric depletion
- Negligible aquifer

Field Performance

Plateau rate:	80 MMscfd	
Minimum rate:	25 MMscfd	
Plateau duration:	10 years	
Field life:	14 years	
Cumulative production:	344 Bscf	
Recovery factor:	72%	
Final pressure:	604 psia	

Reservoir Fluid and CO₂ Properties

From Ti, Pi and HC gas initial Z-factor we calculate HC GEF= **132** svol/rvol

Properties of Pure CO ₂			
Parameter	Value	Units	
Surface Co	nditions		
Standard temperature	60	degF	
Standard pressure	14.7	psia	
Density of pure CO	0.001872	t/m ³	
Density of pure CO_2	1.872	kg/m ³	
Reservoir Co	onditions		
Reservoir temperature	160	degF	
Reservoir pressure	2,015	psia	
Depoity of pure CO	0.44	t/m³	
Density of pure CO ₂	441	kg/m ³	
Surface to Reserv	oir Condit	ions	
CO ₂ GEF	236	svol/rvol	
E	$=\frac{\rho_{reservoir}}{\rho_{surface}}$	er e	

Estimating Storable Quantity to Initial Pressure

If the reservoir is	s restored to the original pressure by CO_2 injection, then the above equation becomes:
	$CO2Mi = \frac{Gp}{Ei} * \rho CO2i$
Where:	
CO2Mi	mass of storable CO ₂ if the reservoir is returned to its original pressure [metric tonnes].
Gp	volume of HC gas that has been produced at surface temperature and pressure [m ³].
Ei	initial HC gas expansion factor [sm³/rm³].
ρCO2i	density of CO ₂ at the original reservoir pressure [tonnes/m ³].

<u>Assumptions</u>

- Pure CO₂
- No mixing with HC gas
- Theoretical maximum

Gp:	344	Bscf	
Ei:	132	svol/rvol	
ρCO2i:	0.441	t/m3	
<i>CO2Mi</i> :	32.5	Mt	
	17,349	mil sm3 🖌	$Vol = \frac{Mass}{0.00187}$
	613	Bscf	

Note that **344 Bscf** of hydrocarbon gas was produced, but the theoretical maximum storable quantity of CO_2 if the pressure is restored to the original pressure is **613 Bscf**, i.e. a ratio of **1.8**.

Estimating Storable Quantities to Any Pressure

 $\rho CO2sto$ and *Esto* are functions of final storage pressure and are obtained from PVT laboratory data or an EOS.

Assumptions

- Pure CO₂
- No mixing with HC gas
- Theoretical maximum

Gaffney Cline

Where Does CO₂ Go When You Inject It?

- In most (all?) cases CO₂ is more dense than HC gas and will tend to sink (and mix) if injected into a gas column.
- It will accumulate at the base of the gas column, either at the gas-oil interface or at the gas-water interface.

Other Aspects of Mixing - CO₂ and CH₄

Diagrams show the percentage increase in pore space needed to accommodate a given surface volume of gas if mixing occurs, compared with when no mixing occurs.

- Significant loss of storage space can occur if CO₂ mixes fully with residue hydrocarbon gas
- The effect is amplified at low temperature and low pressure
- Every situation is different and must be evaluated
- There are no reliable "rules of thumb"

Gaffney Cline In the previous example, it was shown that mixing of CO_2 with HC gas in the reservoir causes a loss of storable quantities of ~8%.

© 2023 GaffneyCline. All rights reserved.

Contamination of the Injected Wellstream (CO₂ with N₂)

Diagram shows the quantity of CO_2 that can be stored in a given pore space when N_2 is present in the injection stream, expressed as a fraction of the quantity of pure CO_2 .

- Large loss due to differences in GEF
 - GEF for CO₂: **348 svol/rvol**
 - GEF for N₂: **124 svol/rvol**
- Additional loss due to mixing

Gaffney Cline In this example, **5%** molar concentration of N_2 in the injection wellstream can reduce the storable quantity of CO_2 by **18%**.

44

Some Case Studies

Dynamic Modelling in Depleted Gas – Typical Workflow

Start with a history matched dynamic model for depletion of HC gas

- 1. Convert to compositional formulation and re-establish the history match.
- 2. Run an injection forecast to initial pressure using existing production wells as injectors and pure CO₂ as injectant and compare with material balance.
- 3. Run scenarios with actual injectant composition, and with and without reservoir mixing (if possible) and compare with analytical calculations.
- 4. Run scenarios with different well configurations.
- 5. Set realistic maximum BHIP constraints and check tail.
- 6. Run parameter sensitivities and assess risks and uncertainties.
- 7. Optimise development based on cost effectiveness (well count vs storable quantities).
- 8. Evaluate long term monitoring options and build in risk mitigation strategies.
- 9. Run further simulations if appropriate:
 - 1. Geomechanical.
 - 2. Thermal note that a reservoir might take decades to re-heat and this will be accompanied by pressure increases.
 - 3. Wellbore thermal investigate wellbore vfp tables. Evaluate hydrate formation risk.

Galfney Cline

Depleted Gas Reservoirs – Example 1

ltem	Quantity
Depth (m)	deep
Initial pressure (psia)	> hydrostatic
Temperature (degF)	normal
CO ₂ density at initial P&T (t/m ³)	0.65
Depletion P (psia)	very low
Material balance CO ₂ quantity (Mt)	39.0
Simulation CO ₂ quantity (Mt)	36.1
Difference (%)	-7%

• Some water influx.

Gaffney Cline

- Some mixing with remaining HC gas.
- Tiny hysteresis effect.
- Good CCS storage candidate.

<u>In reality</u>: The storable quantity will be lower because the final pressure will not be permitted to exceed hydrostatic.

Depleted Gas Reservoirs – Example 2

ltem	Quantity
Depth (m)	moderate
Initial pressure (psia)	hydrostatic
Temperature (degF)	> normal
CO ₂ density at initial P&T (t/m ³)	0.33
Depletion P (psia)	moderate
Material balance CO ₂ quantity (Mt)	17.4
Simulation CO ₂ quantity (Mt)	14.8
Difference (%)	-15%

- History match for gas production is reasonable, but heterogeneity is a concern for CCS.
- Simulation sensitivities to define range of uncertainty:

11.4 : 14.8 : 17.0 Mt (low, mid, high).

-35% : -15% : -5%

Gaffney Cline

<u>In reality</u>: More wells can be drilled, and storable quantities could be higher if the aquifer can be used.

Depleted Gas Reservoirs – Example 3

ltem	Quantity
Depth (m)	very shallow
Initial pressure (psia)	> hydrostatic
Temperature (degF)	> normal
CO ₂ density at initial P&T (t/m ³)	0.26
Depletion P (psia)	moderate
Material balance CO ₂ quantity (Mt)	12.0
Simulation CO ₂ quantity (Mt)	8.4
Difference (%)	-30%

- Aquifer influx.
- Complex geology.
- Complex fluids.

Gaffney Cline

- Shallow and not much scope for increasing BHIP.
- Storable quantities could be even lower.

In reality: Not an optimal CO₂ storage site!

During production:

- Water encroached into oil.
- Oil encroached into gas.
- Gas blowdown.

Dynamic modelling:

- Good black oil history match of oil, water, gas, pressures.
- Converted to compositional formulation for CCS.

Middle East OGCI Study

Country	EUR Free Gas (Tscf)			CO ₂ Storage (Tscf)			CO ₂ Storage (Gt)		
	Low	Best	High	Low	Best	High	Low	Best	High
Kuwait	7	24	34	2	14	38	0.1	0.7	2.0
Oman	31	33	39	8	20	43	0.4	1.0	2.3
Qatar	772	886	956	209	527	1,071	11.0	27.9	56.7
Saudi Arabia	114	138	178	41	99	228	2.2	5.2	12.0
United Arab Emirates	79	188	274	21	112	307	1.1	5.9	16.2
Bahrain	16	21	26	4	12	29	0.2	0.7	1.5
Total	1,020	1,291	1,507	286	784	1,716	15.1	41.5	90.8

CO2sto = UR * SF * Uplift * EF

CO2sto = volume of CO_2

- *UR* = ultimate recovery volume of HC gas
- *SF* = suitability factor
- $Uplift = ratio of CO_2 to HC gas$

$$EF = efficiency factor$$

Parameter	Low	Best	High
SF	0.3	0.5	0.7
Uplift	1.2	1.4	1.6
EF	0.75	0.85	1.00

50

Summary: Depleted Reservoirs vs Aquifers

Saline Aquifers vs. Depleted Gas Fields

Depleted Reservoirs

Saline Aquifers

- Well characterized by data
- Confirmed trap and seal
- Infrastructure

- Relatively larger storage capacity
- Potential for multiple seals

Disadvantages

Gaffney

Cline

S

Advantage

- Legacy wells may leak
- Relatively smaller storage capacity

- Unknown seal integrity
- Extensive monitoring
 needed

Thank you for your attention

Shane Hattingh shane.hattingh@gaffneycline.com

Acknowledgements

Thank you to colleagues Peter Adam, Nick Fulford, Doug Peacock, Drew Powell, Rawdon Seager, Nick Stronach, Mark Wilkie and Daniel Wong for sharing their insights.

