

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Waterflood Optimization by Data Analytics on Mature Fields

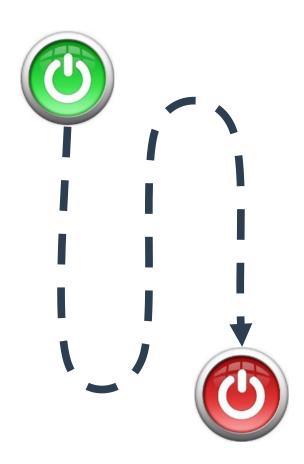
Accelerate the Field Developing Process from Months to Weeks

Babak Moradi

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Outline

- ☐ Introduction
- Classical Analytics
- ☐ Machine Learning
- ☐ Hybrid Workflows
- Case studies
- Conclusions



Mature Fields

A significant amount of information is available in a mature field

Classical Analytics Machine Learning Case studies **Conclusions** Introduction **Hybrid Workflows** 70 % of global oil production 3D models Hybrid methods **Mature** Precision High well **Fields** count **Data Driven Methods** Analytical methods Time & resources **Years of historical** data

Decline Curve Analysis

A set of empirical techniques to forecast production data

Introduction

Classical Analytics

Machine Learning

Hybrid Workflows

Case studies

Conclusions

Arps Production Decline Equations

Exponential

$$q(t) = q_i exp(-D * t)$$

Harmonic

$$q(t) = \frac{q_i}{1 + D * t}$$

Hyperbolic

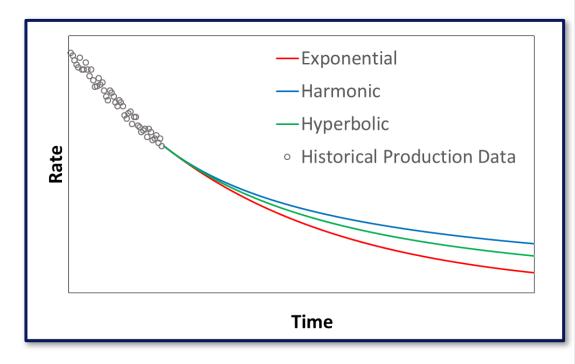
$$q(t) = \frac{q_i}{(1+b*D*t)^{1/b}}$$

q_i = Initial production rate

t = Cumulative time since start of production

D = Initial decline rate

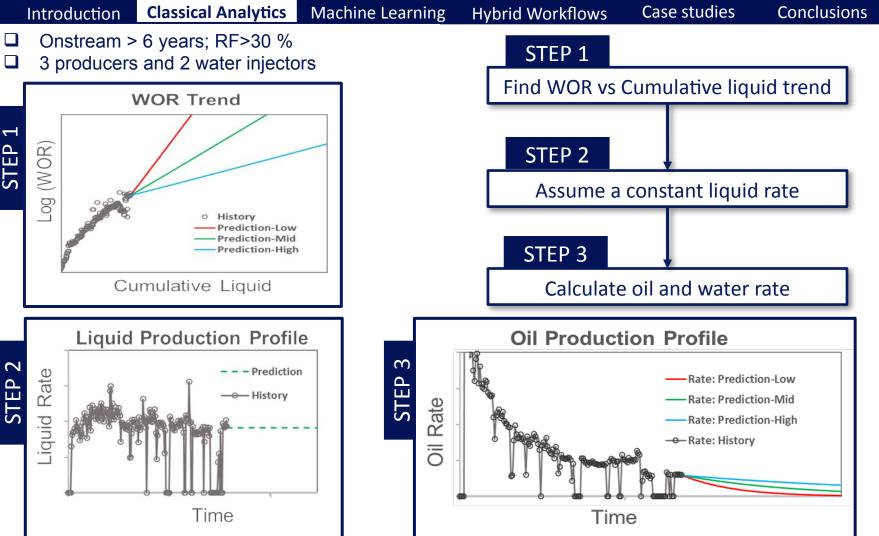
B = Hyperbolic decline constant



Type Curve –WOR* vs Cumulative Liquid

A simple tool to predict waterflood performance

*. WOR = Water Oil Ratio



Classical Analytics

Simple (and fast!) diagnostics and predictive tools

Introduction

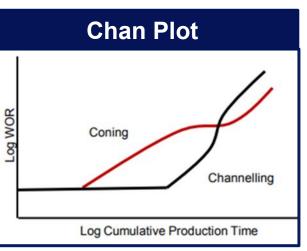
Classical Analytics

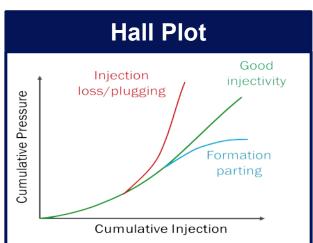
Machine Learning

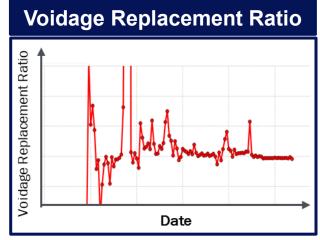
Hybrid Workflows

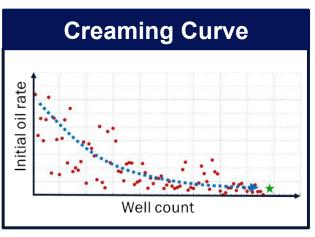
Case studies

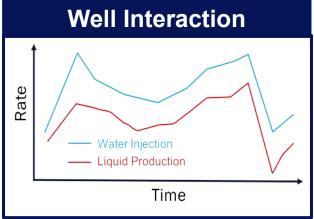
Conclusions

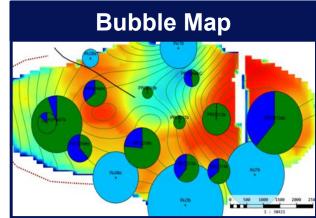












Machine Learning

Applied methods are now ubiquitous around us

Introduction

Classical Analytics

Machine Learning

Hybrid Workflows

Case studies

Conclusions

'Social' sciences

- Data-driven methods widely used
- Massive datasets, no discernible physics

Ie. physics is within the data

Data Driven Models

"Black-box" models learn patterns solely from data. Assuming "the physics is in the data"

Introduction

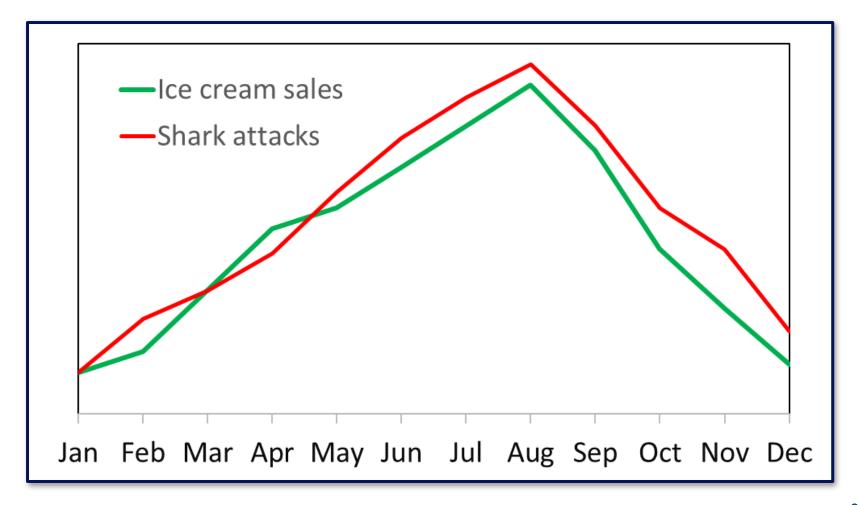
Classical Analytics

Machine Learning

Hybrid Workflows

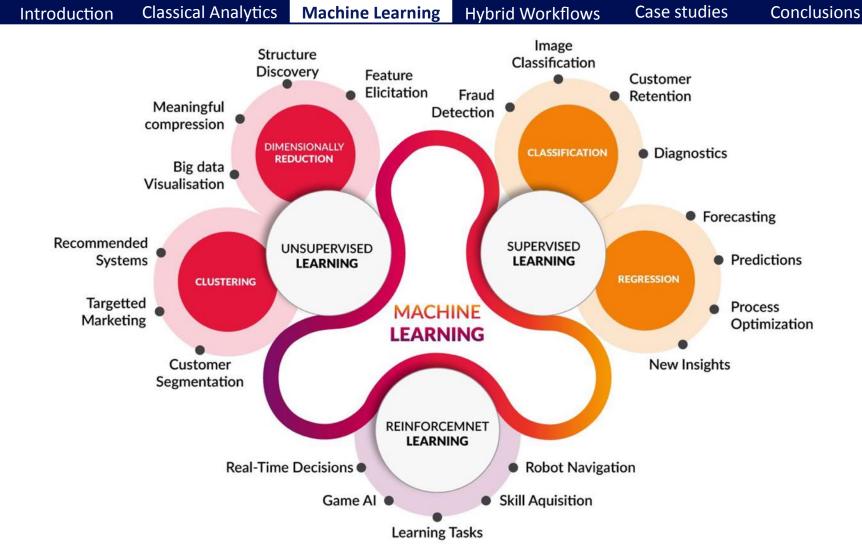
Case studies

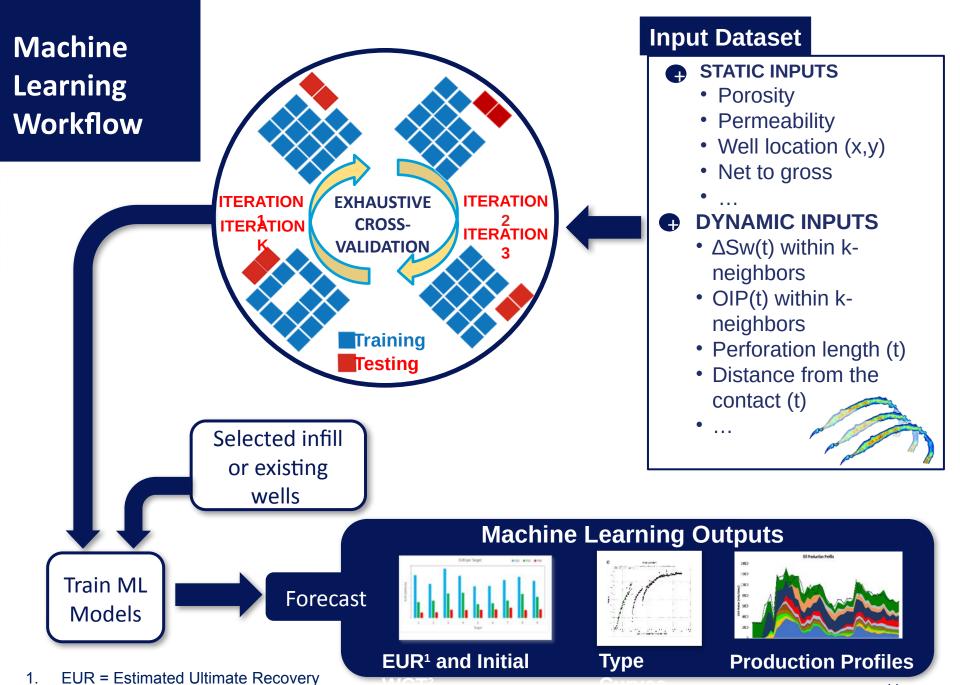
Conclusions



Data Driven Algorithms

Turn data into knowledge





2. WCT= Water-cut

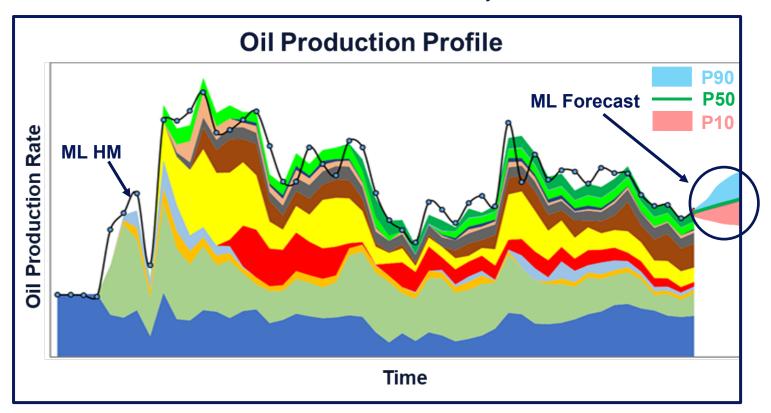
Waterflood Optimization by Machine Learning

An offshore field located in Asia Pacific

Introduction Classical Analytics Machine Learning Hybrid Workflows Case studies Conclusions

- 4 Water Injectors
- ☐ 14 Producers
- → 5+ years of production History

- The forecasted oil production rate varied between – 6% to + 8%
- The ML model concludes the injection efficiency of each water injector



Physics-Compliant Data Driven Models

Can we have the 'best of both worlds'

Classical Analytics Machine Learning Case studies Introduction **Hybrid Workflows Conclusions Data** Popular approaches to develop supervision hybrid models **Reduced physics Data based model** compliant model Physics-guided model ⇔ Data-driven model Higher order datasets Physics-guided loss function Physics-inspired feature engineering **Optimizer** Physics-based model initialized data-driven model **Prediction**

Data-driven but physics-compliant and time-step based process

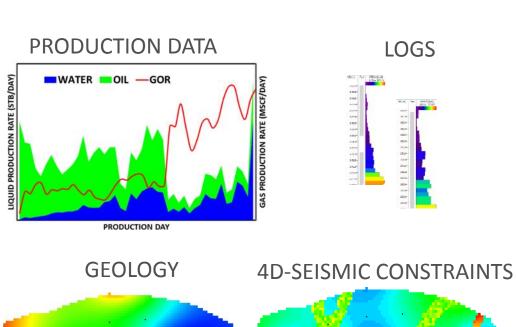
Machine Learning

Conclusions

Classical Analytics Introduction **Inputs** Constraints Flow Potential **Saturation Mapping Outputs**

inputs are analogous to conventional numerical simulators

Case studies



Hybrid Workflows

LOGS

Data-driven but physics-compliant and time-step based process

Conclusions

B. 4D Seismic Survey

Historical data

■WATER ■OIL —GOR

Classical Analytics Introduction **Inputs** Constraints Flow Potential **Saturation Mapping Outputs**

Local Constraints

Machine Learning

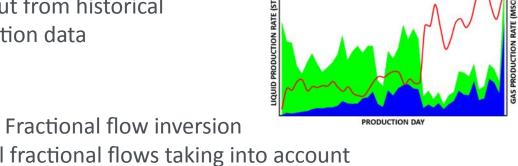
A. Saturation at well locations

Hybrid Workflows

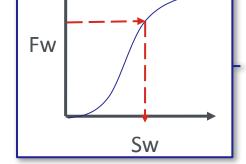
Step 1. Calculate watercut from historical production data

Step 2. Fractional flow inversion

Well fractional flows taking into account the vertical heterogeneity at wells.



Case studies



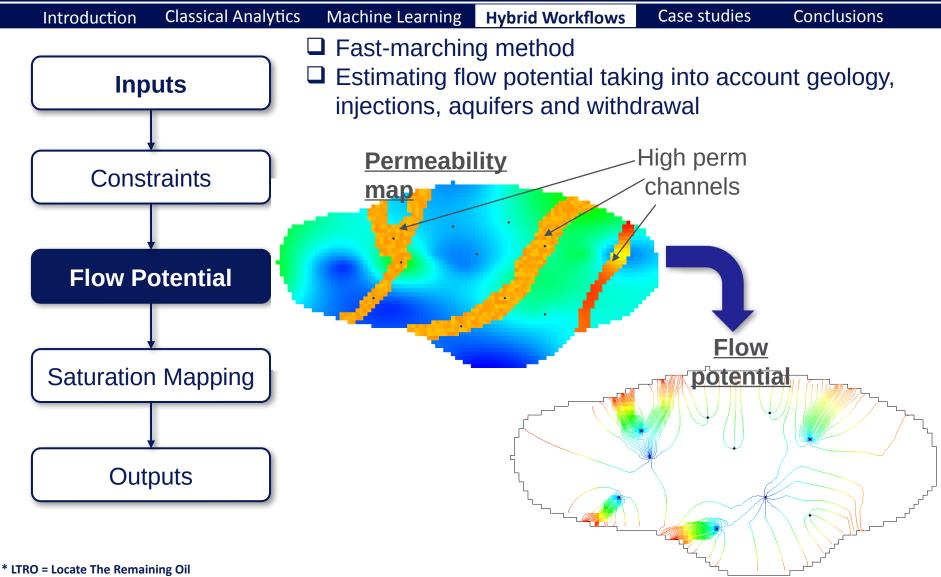
Data-driven but physics-compliant and time-step based process

Classical Analytics Machine Learning Case studies Introduction **Hybrid Workflows Conclusions Global Constraint Inputs** Material Balance **Constraints** Flow Potential Gas **Saturation Mapping** Oil Water **Outputs**

* LTRO = Locate The Remaining Oil

Remaining oil in place = STOIIP - Cumulative production

Data-driven but physics-compliant and time-step based process



Data-driven but physics-compliant and time-step based process

Case studies **Classical Analytics** Machine Learning Introduction **Hybrid Workflows Conclusions Water Saturation Inputs Iteration 4** Constraints Flow Potential **Saturation** Mapping Sw Err. Err. Err. = Error 0 Sw = Water Saturation **Outputs** MB Err. MB = Material Balance MATCH! Iteration 18 * LTRO = Locate The Remaining Oil

Data-driven but physics-compliant and time-step based process

Classical Analytics Case studies Introduction Machine Learning **Hybrid Workflows Conclusions** Outputs are analogous as conventional numerical simulator: **Inputs** ☐ Forecasts, Sw, Delta Sw, STOIP¹, MOIP², Sweep Efficiency, and... Constraints Flow Potential **Saturation Mapping** Outputs 1. STOIP = Stock Tank Oil in Place 2 MOIP = Movable Oil in Place

Validation- Full Physics Comparison

Case study 1: Mature field with >100s active oil producers

Introduction

LOW

Classical Analytics

Machine Learning

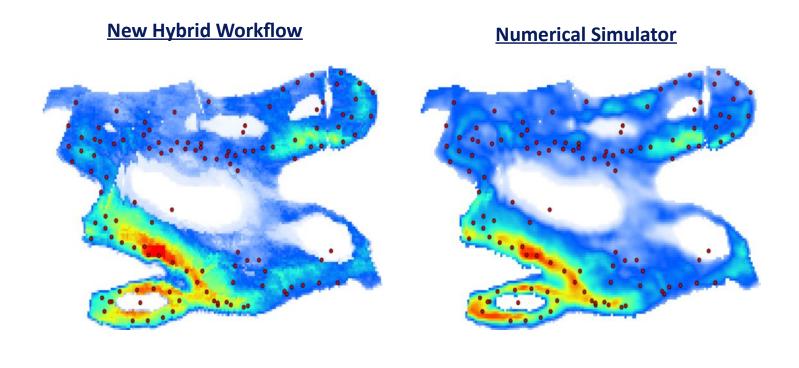
Hybrid Workflows

Case studies

Conclusions

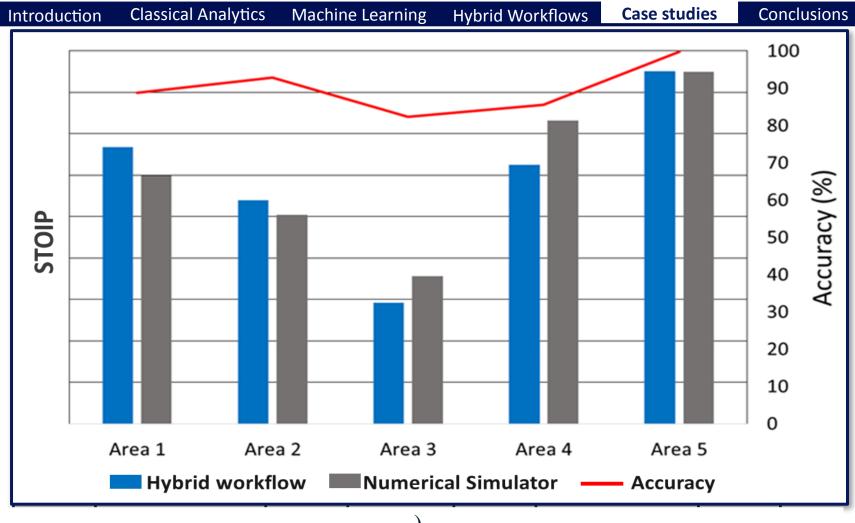
Stock Tank Oil in Place

Time Step: 4



Validation- Evolving Oil Resource Distribution

Case study 1: Mature field with >100s active oil producers



Integrating 4D Seismic into the Hybrid Data-Physics Saturation Mapping Workflow

Case study 2: Offshore oil field located in the North Sea

Introduction

Classical Analytics

Machine Learning

Hybrid Workflows

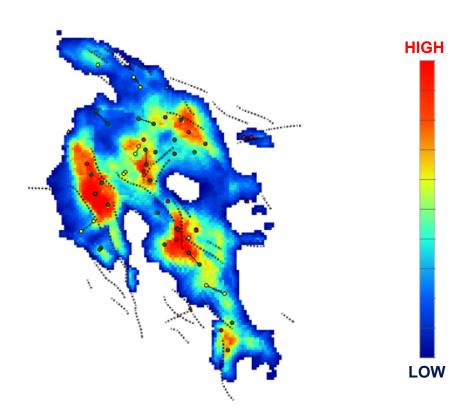
Case studies

Conclusions

Year: 2018

Stock Tank Oil in Place

- 40+ producers and injectors
- Vertical, deviated and nearhorizontal wells
- ☐ Onstream > 25 years
- □ RF > 50%



Incorporating 4D Seismic into the Compliant Saturation Mapping Algorithm

Illustration of conformance

Introduction Classical Analytics

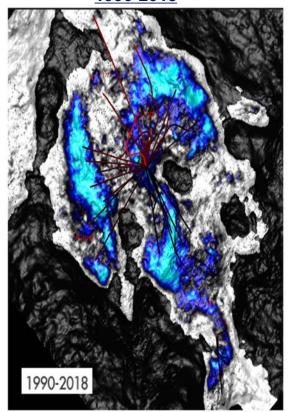
Machine Learning

Hybrid Workflows

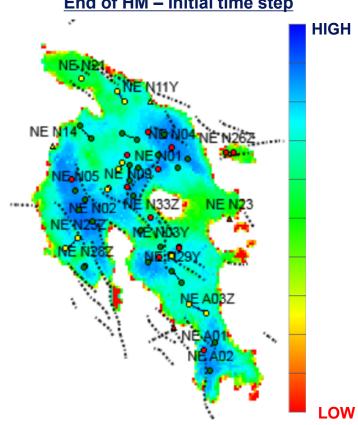
Case studies

Conclusions

4D Seismic Contact Movement 1990-2018



Hybrid workflow
Saturation change (Delta Sw)
End of HM – Initial time step



Combine Saturation Maps with Machine Learning for Infill Drilling

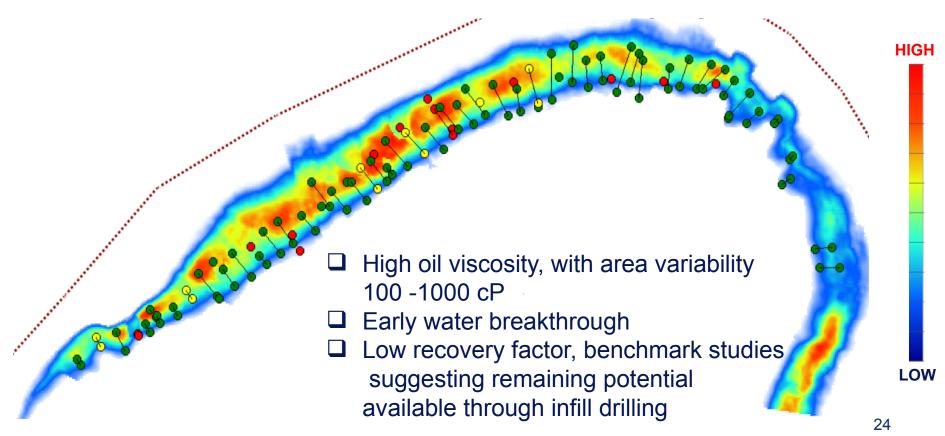
SPE DISTINGUISHED LECTURER"

Case study 3: Onshore field located in the Middle East

Introduction Classical Analytics Machine Learning Hybrid Workflows Case studies Conclusions

Year: 2016

Stock Tank Oil in Place



Workflow – Define Uncertainty Parameters

Machine Learning

SPE DISTINGUISHED LECTURER

Conclusions

Generating and testing multiple realization in a resourceefficient manner

Classical Analytics

Introduction

Define Uncertainty Parameters Sensitivity Analysis- One variable at time Define Control Areas Define a list of uncertain parameters **Static** Poro/Perm **Analyze Tornado Diagrams** Contacts **Create Subsurface Realizations** Dynamic Production allocation Relative permeability **Quantify Risk** Define L/M/H values of each **Identify / Rank Infill Targets** parameter ☐ Run LTRO cases (one variable at **Generate Forecasts** time)

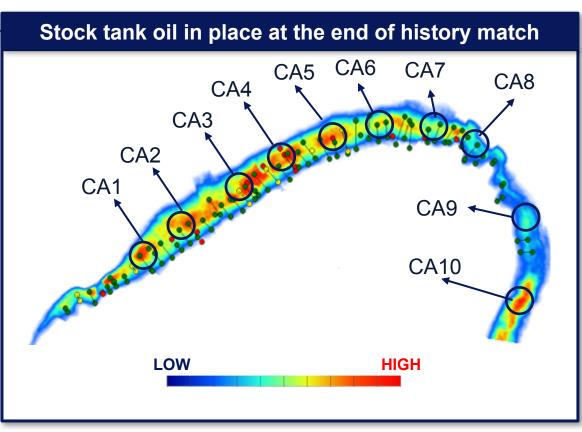
Hybrid Workflows

Case studies

Workflow - Define Control Areas

Generating and testing multiple realization in a resourceefficient manner

Introduction Classical Analytics Machine Learning Hybrid Workflows Case studies Conclusions



Workflow – Analyze Tornado Diagrams

Generating and testing multiple realization in a resource-efficient manner

Introduction Classical Analytics **Machine Learning Hybrid Workflows** Case studies Conclusions One Variable at a Time **Define Uncertain Parameters** Stock tank oil in place at the end of history match Relative Change **Define Control Areas** -100 % 0 % +100 % **PoroPerm Analyze Tornado Diagrams OWC Create Subsurface Realizations** RelPerm **Quantify Risk Allocation OFVF Identify / Rank Infill Targets Viscosity** Identifying main parameters **Generate Forecasts**

Workflow - Create Subsurface Realizations

SPE DISTINGUISHED LECTURER

Generating and testing multiple realization in a resourceefficient manner

Case studies Introduction Classical Analytics **Machine Learning Hybrid Workflows Conclusions Define Uncertain Parameters Create Multiple Subsurface Realizations Define Control Areas Analyze Tornado Diagrams** Rel. Perm. Water Oil **Geology End points** Contact **Create Subsurface Realizations** LOW LOW LOW Case **MID** MID MID **Quantify Risk** HIGH HIGH HIGH **Identify / Rank Infill Targets Generate Forecasts**

Workflow – Quantify Risk

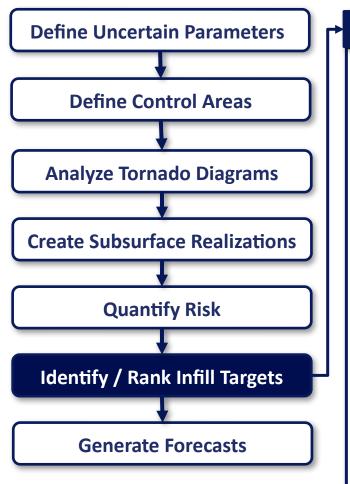
Generating and testing multiple realization in a resourceefficient manner

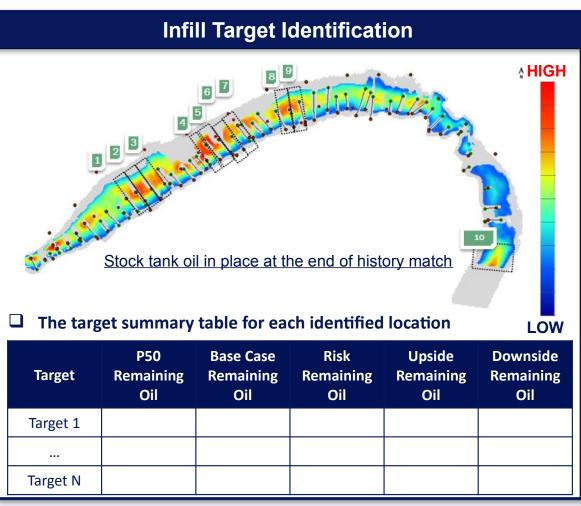
Case studies Introduction Classical Analytics **Machine Learning Hybrid Workflows Conclusions** Covering range of uncertainties **Define Uncertain Parameters Define Range of Outcomes: Quantify Risk Define Control Areas HIGH Analyze Tornado Diagrams Create Subsurface Realizations P10 Quantify Risk P50 Identify / Rank Infill Targets P90 LOW Generate Forecasts** Stock tank oil in place at the end of history match

Workflow - Identify / Rank Infill Targets

Generating and testing multiple realization in a resourceefficient manner

Introduction Classical Analytics Machine Learning Hybrid Workflows Case studies Conclusions

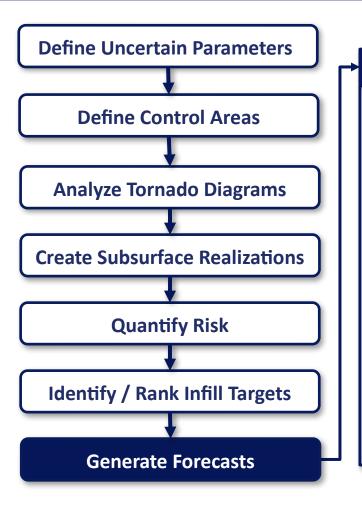


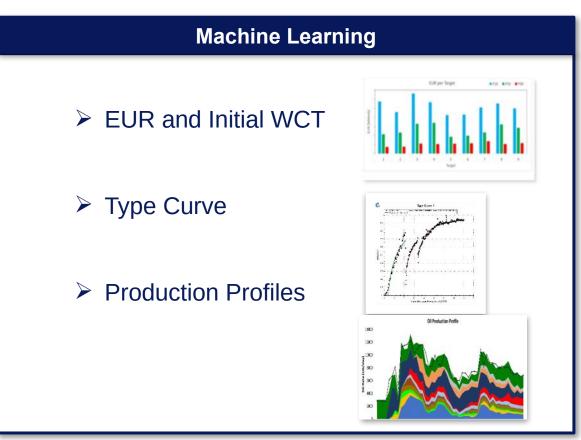


Workflow - Generate Forecasts

Generating and testing multiple realization in a resourceefficient manner

Introduction Classical Analytics Machine Learning Hybrid Workflows Case studies Conclusions





Post drilling results

Proof by the drill bit SPE-196631 (2019, onshore Z field)

Conclusions

Classical Analytics Introduction **Machine Learning** P50- STOIP Map LOW **HIGH** Society of Petroleum Engineers P10 SPE-196631-MS: Locate the Remaining Oil LTRO and P50 **Predictive Analytics** P90 **Application for Development** Actual Decisions on the Z Field

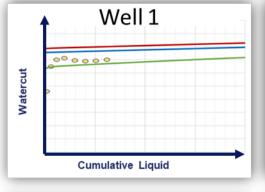
4 Infill wells drilled using hybrid workflow

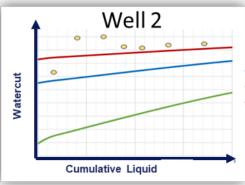
Hybrid Workflows

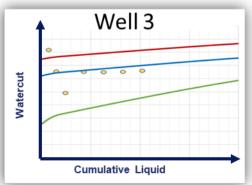
Successful outcome, fairly consistent with forecasts

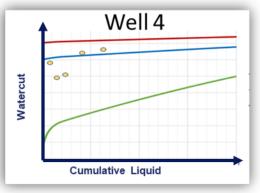
Case studies

Type Curve- WCT vs. Cumulative Liquid







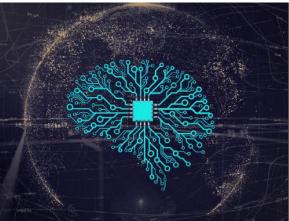


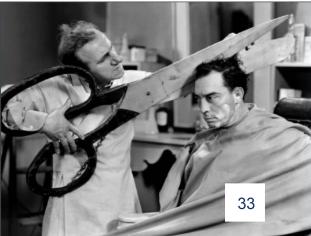
Conclusions

Hybrid physics-guided data-driven approaches are a powerful tool for the E&P industry

Introduction Classical Analytics Machine Learning Hybrid Workflows Case studies Conclusions

- □ Unlock remaining potential of mature fields in a shorter time-frame and cost-effectively compared to the standard integrated modelling workflows
- Ensure uncertainty and risks are captured within the identification of opportunities
- ☐ Hybrid workflows leverage benefits of both approaches: data-driven (inherent calibration to history) and physics-based (understand/explain what's going on)





Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit SPE.org/dl

#SPEdI

