Production Facilities in the Net Zero World

Shwan Dizayee, Francesca Tate

Meet Presenters

Shwan Dizayee

Francesca Tate

Management Consultant Manager Management Consultant Manager

Agenda

1 Introduction 5 mins

- **2** Production facilities in E&P 15 mins
- **3** The role of the energy transition in E&P 10 mins
- **4** Q&A 10 mins

Production facilities in Exploration & Production

- 1. Overview of Production Operations
- 2. Production Facilities
- 3. Production Optimisation Use Cases

Overview of Production Operations

Production is the process of extracting hydrocarbons and separating production fluids into their constituents for transport to downstream refineries to refine for consumer usage. In order to maintain production operations, the production team maintain the wells, flowlines & the installation facility

Wells

Once the well is commissioned, the well needs to be maintained regularly to ensure production.

Flowlines

Flowlines are a network of pipes of lesser diameter (~4-6") transporting the production fluids from well to the installation facility for processing.

Production Facility

The production fluids are a mixture of ...

- Oil
- Water
- Gas
- Solids

Other gases

Overview of Production Operations

Onshore

Offshore: There is no such thing as a standard asset, each is designed based on the particular set of conditions it will face. Broadly there are 5 categories of offshore facilities: **Rig, Platform, NUI, FPSO and Flotel**

Example of an Oil Production Facility

Gas

Water

Oil

Crude

Production Optimisation Use Cases

Production increase – increasing the production capacity of the production facility

Adjusting system performance – finding the optimal requirements for production through simulating different production conditions

Process optimisation – Integrate processes, systems and data enabling visibility across silos and optimal decision making.

Enhanced maintenance scheduling – finding the optimal point to scheduling maintenance activities

Digital transformation of process – through transforming process workflows and automating

Predictive maintenance of assets – becoming predictive in the maintenance of assets which in turn will reduce downtime and optimise production

The role of the energy transition in Exploration & Production

- 1. Energy transition overview
- 2. Use cases in production facilities
- 3. Carbon capture 101
- 4. Hydrogen 101
- 5. Case Study

Overview of renewable integration, low-carbon technologies, and circular economy initiatives

Renewable energy use cases in production facilities

Off-grid power for remote or harsh sites – reducing reliance on diesel and minimizing logistical challenges

Powering well infrastructure – integrating renewables into existing infrastructure to support energy requirements

Powering accommodation units – providing sustainable power sources for lighting and comms

Instrumentation monitoring – ensuring a sustainable power source for sensors, cameras, and comms devices used in production monitoring

Emergency systems – ensures critical functions during outages or emergency systems

Renewable energy microgrids – enhancing energy resilience and reducing dependencies

Carbon capture 101

Carbon capture involves isolating CO2 emissions from the industrial processes before they are released into the air.

MAIN APPROACHES

Post-combustion – involves capturing CO2 after combustion, using technologies like scrubbers or filters. It's like to cleaning the exhaust gases after they've been used to generate energy.

Pre-combustion – captures CO2 before combustion, separating it from other gases in the fuel. It's like refining the fuel mix before it goes into the energy production process.

Oxyfuel combustion – changes the combustion process by using oxygen instead of regular air. It makes it easier to capture CO2. Think of it as optimizing the "ingredients" for combustion.

Capture

CHALLENGES

Cost - implementation costs can be a challenge, impacting widespread adoption

Energy consumption - balancing the energy demands of capture technologies with the energy efficiency goals is a challenge

Infrastructure - requires a developed infrastructure for transport and storage

Storage site availability - availability of appropriate storage sites can impact the feasibility of carbon capture projects

Public acceptance – there are public concerns regarding the safety and long-term environmental impact of storing captured CO2 underground

Hydrogen 101

Hydrogen is the simplest and most abundant element in the universe. In energy discussions, it's often referred to as a clean and versatile fuel.

MAIN TYPES

Grey hydrogen – produced from fossil fuels via steam methane reforming (extracting hydrogen from natural gas). Accounts for majority of hydrogen produced today

Blue hydrogen – produced from fossil fuels combined with carbon capture. Good way to kickstart low carbon hydrogen production

Green hydrogen – produced through electrolysis (decomposition of water into oxygen and hydrogen) using renewable energy

CHALLENGES

Economic viability - current hydrogen production methods, especially green hydrogen, can be more expensive compared to conventional fuels

Infrastructure investment - establishing a comprehensive hydrogen infrastructure, including production facilities, storage, and distribution networks, requires significant investment

Technology maturity - some hydrogen technologies, such as fuel cells, are still evolving and may require further development and standardization

Competing technology - hydrogen competes with other clean energy technologies

A Future Integrated North Sea

Source: Accenture and NZTC Technology Driving Green Energy Growth

